Spaces:
Build error
Build error
File size: 23,632 Bytes
b100e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transcription preprocessors."""
from typing import Any, Callable, Mapping, Optional, Sequence, Tuple
from absl import logging
import gin
from immutabledict import immutabledict
import librosa
from mt3 import event_codec
from mt3 import note_sequences
from mt3 import run_length_encoding
from mt3 import spectrograms
from mt3 import vocabularies
import note_seq
import numpy as np
import seqio
import tensorflow as tf
def add_unique_id(ds: tf.data.Dataset) -> tf.data.Dataset:
"""Add unique integer ID to each example in a dataset."""
def add_id_field(i, ex):
ex['unique_id'] = [i]
return ex
return ds.enumerate().map(
add_id_field, num_parallel_calls=tf.data.experimental.AUTOTUNE)
@seqio.map_over_dataset
def pad_notesequence_array(ex):
"""Pad the NoteSequence array so that it can later be "split"."""
ex['sequence'] = tf.pad(tf.expand_dims(ex['sequence'], 0),
[[0, len(ex['input_times']) - 1]])
return ex
@seqio.map_over_dataset
def add_dummy_targets(ex):
"""Add dummy targets; used in eval when targets are not actually used."""
ex['targets'] = np.array([], dtype=np.int32)
return ex
def _audio_to_frames(
samples: Sequence[float],
spectrogram_config: spectrograms.SpectrogramConfig,
) -> Tuple[Sequence[Sequence[int]], np.ndarray]:
"""Convert audio samples to non-overlapping frames and frame times."""
frame_size = spectrogram_config.hop_width
logging.info('Padding %d samples to multiple of %d', len(samples), frame_size)
samples = np.pad(samples,
[0, frame_size - len(samples) % frame_size],
mode='constant')
frames = spectrograms.split_audio(samples, spectrogram_config)
num_frames = len(samples) // frame_size
logging.info('Encoded %d samples to %d frames (%d samples each)',
len(samples), num_frames, frame_size)
times = np.arange(num_frames) / spectrogram_config.frames_per_second
return frames, times
def _include_inputs(ds, input_record, fields_to_omit=('audio',)):
"""Include fields from input record (other than audio) in dataset records."""
def include_inputs_fn(output_record):
for key in set(input_record.keys()) - set(output_record.keys()):
output_record[key] = input_record[key]
for key in fields_to_omit:
del output_record[key]
return output_record
return ds.map(include_inputs_fn,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
def tokenize_transcription_example(
ds: tf.data.Dataset, spectrogram_config: spectrograms.SpectrogramConfig,
codec: event_codec.Codec, is_training_data: bool,
onsets_only: bool, include_ties: bool, audio_is_samples: bool,
id_feature_key: Optional[str] = None
) -> tf.data.Dataset:
"""Tokenize a note transcription example for run-length encoding.
Outputs include:
inputs: audio sample frames, num_frames-by-frame_size
input_time: timestamp for each frame
targets: symbolic sequence of note-related events
input_event_start_indices: start target index for every input index
input_event_end_indices: end target index for every input index
Args:
ds: Input dataset.
spectrogram_config: Spectrogram configuration.
codec: Event vocabulary codec.
is_training_data: Unused.
onsets_only: If True, include only onset events (not offset, velocity, or
program).
include_ties: If True, also write state events containing active notes to
support a "tie" section after run-length encoding.
audio_is_samples: If True, audio is floating-point samples instead of
serialized WAV.
id_feature_key: If not None, replace sequence ID with specified key field
from the dataset.
Returns:
Dataset with the outputs described above.
"""
del is_training_data
if onsets_only and include_ties:
raise ValueError('Ties not supported when only modeling onsets.')
def tokenize(sequence, audio, sample_rate, example_id=None):
ns = note_seq.NoteSequence.FromString(sequence)
note_sequences.validate_note_sequence(ns)
if example_id is not None:
ns.id = example_id
if audio_is_samples:
samples = audio
if sample_rate != spectrogram_config.sample_rate:
samples = librosa.resample(
samples, sample_rate, spectrogram_config.sample_rate)
else:
samples = note_seq.audio_io.wav_data_to_samples_librosa(
audio, sample_rate=spectrogram_config.sample_rate)
logging.info('Got samples for %s::%s with length %d',
ns.id, ns.filename, len(samples))
frames, frame_times = _audio_to_frames(samples, spectrogram_config)
if onsets_only:
times, values = note_sequences.note_sequence_to_onsets(ns)
else:
ns = note_seq.apply_sustain_control_changes(ns)
times, values = (
note_sequences.note_sequence_to_onsets_and_offsets_and_programs(ns))
# The original NoteSequence can have a lot of control changes we don't need;
# delete them.
del ns.control_changes[:]
(events, event_start_indices, event_end_indices,
state_events, state_event_indices) = (
run_length_encoding.encode_and_index_events(
state=note_sequences.NoteEncodingState() if include_ties else None,
event_times=times,
event_values=values,
encode_event_fn=note_sequences.note_event_data_to_events,
codec=codec,
frame_times=frame_times,
encoding_state_to_events_fn=(
note_sequences.note_encoding_state_to_events
if include_ties else None)))
yield {
'inputs': frames,
'input_times': frame_times,
'targets': events,
'input_event_start_indices': event_start_indices,
'input_event_end_indices': event_end_indices,
'state_events': state_events,
'input_state_event_indices': state_event_indices,
'sequence': ns.SerializeToString()
}
def process_record(input_record):
if audio_is_samples and 'sample_rate' not in input_record:
raise ValueError('Must provide sample rate when audio is samples.')
args = [
input_record['sequence'],
input_record['audio'],
input_record['sample_rate'] if 'sample_rate' in input_record else 0
]
if id_feature_key is not None:
args.append(input_record[id_feature_key])
ds = tf.data.Dataset.from_generator(
tokenize,
output_signature={
'inputs':
tf.TensorSpec(
shape=(None, spectrogram_config.hop_width),
dtype=tf.float32),
'input_times':
tf.TensorSpec(shape=(None,), dtype=tf.float32),
'targets':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_start_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_end_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'state_events':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_state_event_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'sequence':
tf.TensorSpec(shape=(), dtype=tf.string)
},
args=args)
ds = _include_inputs(ds, input_record)
return ds
tokenized_records = ds.flat_map(process_record)
return tokenized_records
def tokenize_guitarset_example(
ds: tf.data.Dataset, spectrogram_config: spectrograms.SpectrogramConfig,
codec: event_codec.Codec, is_training_data: bool,
onsets_only: bool, include_ties: bool
) -> tf.data.Dataset:
"""Tokenize a GuitarSet transcription example."""
def _preprocess_example(ex, name):
assert 'inst_names' not in ex, 'Key `inst_names` is already populated.'
ex['inst_names'] = [name]
ex['instrument_sequences'] = [ex.pop('sequence')]
return ex
ds = ds.map(
lambda x: _preprocess_example(x, 'Clean Guitar'),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = tokenize_example_with_program_lookup(
ds,
spectrogram_config=spectrogram_config,
codec=codec,
is_training_data=is_training_data,
inst_name_to_program_fn=guitarset_instrument_to_program,
onsets_only=onsets_only,
include_ties=include_ties,
id_feature_key='id')
return ds
def guitarset_instrument_to_program(instrument: str) -> int:
"""GuitarSet is all guitar, return the first MIDI guitar program."""
if instrument == 'Clean Guitar':
return 24
else:
raise ValueError('Unknown GuitarSet instrument: %s' % instrument)
def tokenize_example_with_program_lookup(
ds: tf.data.Dataset,
spectrogram_config: spectrograms.SpectrogramConfig,
codec: event_codec.Codec,
is_training_data: bool,
onsets_only: bool,
include_ties: bool,
inst_name_to_program_fn: Callable[[str], int],
id_feature_key: Optional[str] = None
) -> tf.data.Dataset:
"""Tokenize an example, optionally looking up and assigning program numbers.
This can be used by any dataset where a mapping function can be used to
map from the inst_names feature to a set of program numbers.
Args:
ds: Input dataset.
spectrogram_config: Spectrogram configuration.
codec: Event vocabulary codec.
is_training_data: Unused.
onsets_only: If True, include only onset events (not offset & velocity).
include_ties: If True, include tie events.
inst_name_to_program_fn: A function used to map the instrument names
in the `inst_names` feature of each example to a MIDI program number.
id_feature_key: If not None, replace sequence ID with specified key field
from the dataset.
Returns:
Dataset with the outputs described above.
"""
del is_training_data
def tokenize(sequences, inst_names, audio, example_id=None):
# Add all the notes from the tracks to a single NoteSequence.
ns = note_seq.NoteSequence(ticks_per_quarter=220)
tracks = [note_seq.NoteSequence.FromString(seq) for seq in sequences]
assert len(tracks) == len(inst_names)
for track, inst_name in zip(tracks, inst_names):
program = inst_name_to_program_fn(
inst_name.decode())
# Note that there are no pitch bends in URMP data; the below block will
# raise PitchBendError if one is encountered.
add_track_to_notesequence(ns, track, program=program, is_drum=False,
ignore_pitch_bends=False)
note_sequences.assign_instruments(ns)
note_sequences.validate_note_sequence(ns)
if example_id is not None:
ns.id = example_id
samples = note_seq.audio_io.wav_data_to_samples_librosa(
audio, sample_rate=spectrogram_config.sample_rate)
logging.info('Got samples for %s::%s with length %d',
ns.id, ns.filename, len(samples))
frames, frame_times = _audio_to_frames(samples, spectrogram_config)
if onsets_only:
times, values = note_sequences.note_sequence_to_onsets(ns)
else:
times, values = (
note_sequences.note_sequence_to_onsets_and_offsets_and_programs(ns))
# The original NoteSequence can have a lot of control changes we don't need;
# delete them.
del ns.control_changes[:]
(events, event_start_indices, event_end_indices,
state_events, state_event_indices) = (
run_length_encoding.encode_and_index_events(
state=note_sequences.NoteEncodingState() if include_ties else None,
event_times=times,
event_values=values,
encode_event_fn=note_sequences.note_event_data_to_events,
codec=codec,
frame_times=frame_times,
encoding_state_to_events_fn=(
note_sequences.note_encoding_state_to_events
if include_ties else None)))
yield {
'inputs': frames,
'input_times': frame_times,
'targets': events,
'input_event_start_indices': event_start_indices,
'input_event_end_indices': event_end_indices,
'state_events': state_events,
'input_state_event_indices': state_event_indices,
'sequence': ns.SerializeToString()
}
def process_record(input_record):
args = [
input_record['instrument_sequences'],
input_record['inst_names'],
input_record['audio'],
]
if id_feature_key is not None:
args.append(input_record[id_feature_key])
ds = tf.data.Dataset.from_generator(
tokenize,
output_signature={
'inputs':
tf.TensorSpec(
shape=(None, spectrogram_config.hop_width),
dtype=tf.float32),
'input_times':
tf.TensorSpec(shape=(None,), dtype=tf.float32),
'targets':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_start_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_end_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'state_events':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_state_event_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'sequence':
tf.TensorSpec(shape=(), dtype=tf.string)
},
args=args)
ds = _include_inputs(ds, input_record)
return ds
tokenized_records = ds.flat_map(process_record)
return tokenized_records
_URMP_INSTRUMENT_PROGRAMS = immutabledict({
'vn': 40, # violin
'va': 41, # viola
'vc': 42, # cello
'db': 43, # double bass
'tpt': 56, # trumpet
'tbn': 57, # trombone
'tba': 58, # tuba
'hn': 60, # French horn
'sax': 64, # saxophone
'ob': 68, # oboe
'bn': 70, # bassoon
'cl': 71, # clarinet
'fl': 73 # flute
})
def urmp_instrument_to_program(urmp_instrument: str) -> int:
"""Fetch the program number associated with a given URMP instrument code."""
if urmp_instrument not in _URMP_INSTRUMENT_PROGRAMS:
raise ValueError('unknown URMP instrument: %s' % urmp_instrument)
return _URMP_INSTRUMENT_PROGRAMS[urmp_instrument]
_SLAKH_CLASS_PROGRAMS = immutabledict({
'Acoustic Piano': 0,
'Electric Piano': 4,
'Chromatic Percussion': 8,
'Organ': 16,
'Acoustic Guitar': 24,
'Clean Electric Guitar': 26,
'Distorted Electric Guitar': 29,
'Acoustic Bass': 32,
'Electric Bass': 33,
'Violin': 40,
'Viola': 41,
'Cello': 42,
'Contrabass': 43,
'Orchestral Harp': 46,
'Timpani': 47,
'String Ensemble': 48,
'Synth Strings': 50,
'Choir and Voice': 52,
'Orchestral Hit': 55,
'Trumpet': 56,
'Trombone': 57,
'Tuba': 58,
'French Horn': 60,
'Brass Section': 61,
'Soprano/Alto Sax': 64,
'Tenor Sax': 66,
'Baritone Sax': 67,
'Oboe': 68,
'English Horn': 69,
'Bassoon': 70,
'Clarinet': 71,
'Pipe': 73,
'Synth Lead': 80,
'Synth Pad': 88
})
def slakh_class_to_program_and_is_drum(slakh_class: str) -> Tuple[int, bool]:
"""Map Slakh class string to program number and boolean indicating drums."""
if slakh_class == 'Drums':
return 0, True
elif slakh_class not in _SLAKH_CLASS_PROGRAMS:
raise ValueError('unknown Slakh class: %s' % slakh_class)
else:
return _SLAKH_CLASS_PROGRAMS[slakh_class], False
class PitchBendError(Exception):
pass
def add_track_to_notesequence(ns: note_seq.NoteSequence,
track: note_seq.NoteSequence,
program: int, is_drum: bool,
ignore_pitch_bends: bool):
"""Add a track to a NoteSequence."""
if track.pitch_bends and not ignore_pitch_bends:
raise PitchBendError
track_sus = note_seq.apply_sustain_control_changes(track)
for note in track_sus.notes:
note.program = program
note.is_drum = is_drum
ns.notes.extend([note])
ns.total_time = max(ns.total_time, note.end_time)
def tokenize_slakh_example(
ds: tf.data.Dataset,
spectrogram_config: spectrograms.SpectrogramConfig,
codec: event_codec.Codec,
is_training_data: bool,
onsets_only: bool,
include_ties: bool,
track_specs: Optional[Sequence[note_sequences.TrackSpec]],
ignore_pitch_bends: bool
) -> tf.data.Dataset:
"""Tokenize a Slakh multitrack note transcription example."""
def tokenize(sequences, samples, sample_rate, inst_names, example_id):
if sample_rate != spectrogram_config.sample_rate:
samples = librosa.resample(
samples, sample_rate, spectrogram_config.sample_rate)
frames, frame_times = _audio_to_frames(samples, spectrogram_config)
# Add all the notes from the tracks to a single NoteSequence.
ns = note_seq.NoteSequence(ticks_per_quarter=220)
tracks = [note_seq.NoteSequence.FromString(seq) for seq in sequences]
assert len(tracks) == len(inst_names)
if track_specs:
# Specific tracks expected.
assert len(tracks) == len(track_specs)
for track, spec, inst_name in zip(tracks, track_specs, inst_names):
# Make sure the instrument name matches what we expect.
assert inst_name.decode() == spec.name
try:
add_track_to_notesequence(ns, track,
program=spec.program, is_drum=spec.is_drum,
ignore_pitch_bends=ignore_pitch_bends)
except PitchBendError:
# TODO(iansimon): is there a way to count these?
return
else:
for track, inst_name in zip(tracks, inst_names):
# Instrument name should be Slakh class.
program, is_drum = slakh_class_to_program_and_is_drum(
inst_name.decode())
try:
add_track_to_notesequence(ns, track, program=program, is_drum=is_drum,
ignore_pitch_bends=ignore_pitch_bends)
except PitchBendError:
# TODO(iansimon): is there a way to count these?
return
note_sequences.assign_instruments(ns)
note_sequences.validate_note_sequence(ns)
if is_training_data:
# Trim overlapping notes in training (as our event vocabulary cannot
# represent them), but preserve original NoteSequence for eval.
ns = note_sequences.trim_overlapping_notes(ns)
ns.id = example_id
if onsets_only:
times, values = note_sequences.note_sequence_to_onsets(ns)
else:
times, values = (
note_sequences.note_sequence_to_onsets_and_offsets_and_programs(ns))
(events, event_start_indices, event_end_indices,
state_events, state_event_indices) = (
run_length_encoding.encode_and_index_events(
state=note_sequences.NoteEncodingState() if include_ties else None,
event_times=times,
event_values=values,
encode_event_fn=note_sequences.note_event_data_to_events,
codec=codec,
frame_times=frame_times,
encoding_state_to_events_fn=(
note_sequences.note_encoding_state_to_events
if include_ties else None)))
yield {
'inputs': frames,
'input_times': frame_times,
'targets': events,
'input_event_start_indices': event_start_indices,
'input_event_end_indices': event_end_indices,
'state_events': state_events,
'input_state_event_indices': state_event_indices,
'sequence': ns.SerializeToString()
}
def process_record(input_record):
ds = tf.data.Dataset.from_generator(
tokenize,
output_signature={
'inputs':
tf.TensorSpec(
shape=(None, spectrogram_config.hop_width),
dtype=tf.float32),
'input_times':
tf.TensorSpec(shape=(None,), dtype=tf.float32),
'targets':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_start_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_event_end_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'state_events':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'input_state_event_indices':
tf.TensorSpec(shape=(None,), dtype=tf.int32),
'sequence':
tf.TensorSpec(shape=(), dtype=tf.string)
},
args=[
input_record['note_sequences'], input_record['mix'],
input_record['audio_sample_rate'], input_record['inst_names'],
input_record['track_id']
])
ds = _include_inputs(ds, input_record, fields_to_omit=['mix', 'stems'])
return ds
tokenized_records = ds.flat_map(process_record)
return tokenized_records
@seqio.map_over_dataset
def compute_spectrograms(ex, spectrogram_config):
samples = spectrograms.flatten_frames(ex['inputs'])
ex['inputs'] = spectrograms.compute_spectrogram(samples, spectrogram_config)
ex['raw_inputs'] = samples
return ex
def handle_too_long(dataset: tf.data.Dataset,
output_features: seqio.preprocessors.OutputFeaturesType,
sequence_length: seqio.preprocessors.SequenceLengthType,
skip: bool = False) -> tf.data.Dataset:
"""Handle sequences that are too long, by either failing or skipping them."""
def max_length_for_key(key):
max_length = sequence_length[key]
if output_features[key].add_eos:
max_length -= 1
return max_length
if skip:
# Drop examples where one of the features is longer than its maximum
# sequence length.
def is_not_too_long(ex):
return not tf.reduce_any(
[k in output_features and len(v) > max_length_for_key(k)
for k, v in ex.items()])
dataset = dataset.filter(is_not_too_long)
def assert_not_too_long(key: str, value: tf.Tensor) -> tf.Tensor:
if key in output_features:
max_length = max_length_for_key(key)
tf.debugging.assert_less_equal(
tf.shape(value)[0], max_length,
f'Value for "{key}" field exceeds maximum length')
return value
# Assert that no examples have features longer than their maximum sequence
# length.
return dataset.map(
lambda ex: {k: assert_not_too_long(k, v) for k, v in ex.items()},
num_parallel_calls=tf.data.experimental.AUTOTUNE)
@gin.configurable
def map_midi_programs(
ds: tf.data.Dataset,
codec: event_codec.Codec,
granularity_type: str = 'full',
feature_key: str = 'targets'
) -> Mapping[str, Any]:
"""Apply MIDI program map to token sequences."""
granularity = vocabularies.PROGRAM_GRANULARITIES[granularity_type]
def _map_program_tokens(ex):
ex[feature_key] = granularity.tokens_map_fn(ex[feature_key], codec)
return ex
return ds.map(_map_program_tokens,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
|