initial application
Browse files- app.py +81 -0
- requirements.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import random
|
| 4 |
+
import chess
|
| 5 |
+
import chess.svg
|
| 6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, pipeline
|
| 7 |
+
|
| 8 |
+
token = os.environ['auth_token']
|
| 9 |
+
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained('jrahn/chessv3', use_auth_token=token)
|
| 11 |
+
model = AutoModelForSequenceClassification.from_pretrained('jrahn/chessv3', use_auth_token=token)
|
| 12 |
+
pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
|
| 13 |
+
|
| 14 |
+
empty_field = '0'
|
| 15 |
+
board_split = ' | '
|
| 16 |
+
nums = {str(n): empty_field * n for n in range(1, 9)}
|
| 17 |
+
nums_rev = {v:k for k,v in reversed(nums.items())}
|
| 18 |
+
|
| 19 |
+
board = chess.Board()
|
| 20 |
+
|
| 21 |
+
def encode_fen(fen):
|
| 22 |
+
# decompress fen representation
|
| 23 |
+
# prepare for sub-word tokenization
|
| 24 |
+
fen_board, fen_rest = fen.split(' ', 1)
|
| 25 |
+
for n in nums:
|
| 26 |
+
fen_board = fen_board.replace(n, nums[n])
|
| 27 |
+
fen_board = '+' + fen_board
|
| 28 |
+
fen_board = fen_board.replace('/', ' +')
|
| 29 |
+
return board_split.join([fen_board, fen_rest])
|
| 30 |
+
|
| 31 |
+
def decode_fen_repr(fen_repr):
|
| 32 |
+
fen_board, fen_rest = fen_repr.split(board_split, 1)
|
| 33 |
+
for n in nums_rev:
|
| 34 |
+
fen_board = fen_board.replace(n, nums_rev[n])
|
| 35 |
+
fen_board = fen_board.replace(' +', '/')
|
| 36 |
+
fen_board = fen_board.replace('+', '')
|
| 37 |
+
return ' '.join([fen_board, fen_rest])
|
| 38 |
+
|
| 39 |
+
def predict_move(fen, top_k=3):
|
| 40 |
+
fen_prep = encode_fen(fen)
|
| 41 |
+
preds = pipe(fen_prep, top_k=top_k)
|
| 42 |
+
weights = [p['score'] for p in preds]
|
| 43 |
+
p = random.choices(preds, weights=weights)[0]
|
| 44 |
+
# discard illegal moves (https://python-chess.readthedocs.io/en/latest/core.html#chess.Board.legal_moves), then select top_k
|
| 45 |
+
return p['label']
|
| 46 |
+
|
| 47 |
+
def play_yolochess(inp_color, inp_notation, inp_move, inp_custom_fen, state):
|
| 48 |
+
global board
|
| 49 |
+
if inp_custom_fen:
|
| 50 |
+
board = chess.Board(fen=inp_custom_fen)
|
| 51 |
+
if (inp_color == 'white' and board.turn == chess.BLACK) or (inp_color == 'black' and board.turn == chess.WHITE):
|
| 52 |
+
move = predict_move(board.fen())
|
| 53 |
+
board.push_uci(move)
|
| 54 |
+
else:
|
| 55 |
+
if inp_move:
|
| 56 |
+
if inp_notation == 'UCI':
|
| 57 |
+
board.push_uci(inp_move)
|
| 58 |
+
if inp_notation == 'SAN':
|
| 59 |
+
board.push_san(inp_move)
|
| 60 |
+
with open('board.svg', 'w') as f:
|
| 61 |
+
f.write(str(chess.svg.board(board)))
|
| 62 |
+
print(state)
|
| 63 |
+
return 'board.svg', board.fen()
|
| 64 |
+
|
| 65 |
+
iface = gr.Interface(
|
| 66 |
+
fn=play_yolochess,
|
| 67 |
+
inputs=[
|
| 68 |
+
gr.Radio(["white", "black"], value="white", label='human player color'),
|
| 69 |
+
gr.Radio(["SAN", "UCI"], value="SAN", label='move notation'),
|
| 70 |
+
gr.Textbox(label='human player move'),
|
| 71 |
+
gr.Textbox(placeholder=board.fen(), label='starting position FEN'),
|
| 72 |
+
"state"
|
| 73 |
+
],
|
| 74 |
+
outputs=[
|
| 75 |
+
gr.Image(label='position'),
|
| 76 |
+
"state"
|
| 77 |
+
],
|
| 78 |
+
title='Play YoloChess - Policy Network v0.3',
|
| 79 |
+
allow_flagging="never",
|
| 80 |
+
)
|
| 81 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
chess==1.9.2
|