Added input mosaicing
Browse files
app.py
CHANGED
@@ -5,8 +5,23 @@ import skimage
|
|
5 |
learn = load_learner('panda-model-1')
|
6 |
|
7 |
labels = learn.dls.vocab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def predict(img):
|
9 |
-
img = PILImage.create(img)
|
10 |
pred,pred_idx,probs = learn.predict(img)
|
11 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
|
|
|
5 |
learn = load_learner('panda-model-1')
|
6 |
|
7 |
labels = learn.dls.vocab
|
8 |
+
|
9 |
+
def get_crops(img):
|
10 |
+
tile_size = 250
|
11 |
+
img = np.array(img)
|
12 |
+
crop = np.array(img.shape) // tile_size * tile_size; crop
|
13 |
+
imgc = img[:crop[0],:crop[1]]
|
14 |
+
imgc = imgc.reshape(imgc.shape[0] // tile_size, tile_size, imgc.shape[1] // tile_size, tile_size, 3)
|
15 |
+
xs, ys = (imgc.mean(axis=1).mean(axis=2).mean(axis=-1) < 252).nonzero()
|
16 |
+
if len(xs) == 0:
|
17 |
+
xs, ys = (imgc.mean(axis=1).mean(axis=2).mean(axis=-1)).nonzero()
|
18 |
+
# if len(xs) < 2: print("no data in image:", x)
|
19 |
+
pidxs = random.choices(list(range(len(xs))), k=36)
|
20 |
+
return PILImage.create(imgc[xs[pidxs],:,ys[pidxs],:].reshape(6,6,tile_size,tile_size,3).transpose(0,2,1,3,4).reshape(6*tile_size,6*tile_size,3))
|
21 |
+
# return imgc.mean(axis=1).mean(axis=2).mean(axis=-1)
|
22 |
+
|
23 |
def predict(img):
|
24 |
+
img = get_crops(PILImage.create(img))
|
25 |
pred,pred_idx,probs = learn.predict(img)
|
26 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
27 |
|