Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,103 +13,105 @@ from langgraph.graph import START, StateGraph
|
|
13 |
from typing_extensions import List, TypedDict
|
14 |
import xmltodict
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
title = dict_information["tei"]["teiHeader"]["fileDesc"]["titleStmt"]["title"]
|
40 |
-
abstract = dict_information["tei"]["teiHeader"]["profileDesc"]["abstract"]["p"]
|
41 |
-
return title
|
42 |
-
|
43 |
-
def initiate_graph(file):
|
44 |
-
global qa_graph, current_file
|
45 |
-
|
46 |
-
if current_file != file.name:
|
47 |
-
qa_graph = None
|
48 |
-
current_file = file.name
|
49 |
-
|
50 |
-
loader = GenericLoader.from_filesystem(
|
51 |
-
file.name,
|
52 |
-
parser=GrobidParser(
|
53 |
segment_sentences=False,
|
54 |
-
grobid_server="https://jpangas-grobid-paper-extractor.hf.space/api/processFulltextDocument",
|
55 |
-
),
|
56 |
-
)
|
57 |
-
|
58 |
-
docs = loader.load()
|
59 |
-
|
60 |
-
embeddings = OpenAIEmbeddings()
|
61 |
-
vector_store = InMemoryVectorStore(embeddings)
|
62 |
-
|
63 |
-
llm = ChatOpenAI(model="gpt-4o-mini")
|
64 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
65 |
-
chunk_size=1000, chunk_overlap=200, add_start_index=True
|
66 |
-
)
|
67 |
-
all_splits = text_splitter.split_documents(docs)
|
68 |
-
vector_store.add_documents(documents=all_splits)
|
69 |
-
prompt = hub.pull("rlm/rag-prompt")
|
70 |
-
|
71 |
-
def retrieve(state: State):
|
72 |
-
retrieved_docs = vector_store.similarity_search(state["question"])
|
73 |
-
return {"context": retrieved_docs}
|
74 |
-
|
75 |
-
def generate(state: State):
|
76 |
-
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
77 |
-
messages = prompt.invoke(
|
78 |
-
{"question": state["question"], "context": docs_content}
|
79 |
)
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
def answer_question(question, history):
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
return "
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
yield answer
|
103 |
-
return
|
104 |
|
105 |
-
for i in range(len(answer)):
|
106 |
-
time.sleep(0.01)
|
107 |
-
yield answer[: i + 1]
|
108 |
|
109 |
def main():
|
|
|
|
|
110 |
with gr.Blocks() as demo:
|
111 |
file_input = gr.File(
|
112 |
-
label="Upload a research paper as a
|
113 |
file_types=[".pdf"],
|
114 |
)
|
115 |
|
@@ -117,11 +119,12 @@ def main():
|
|
117 |
label="Status of Upload", value="No Paper Uploaded", interactive=False
|
118 |
)
|
119 |
|
120 |
-
chat_interface = gr.ChatInterface(slow_echo, type="messages")
|
|
|
|
|
121 |
|
122 |
-
|
123 |
|
124 |
-
demo.queue().launch()
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
main()
|
|
|
13 |
from typing_extensions import List, TypedDict
|
14 |
import xmltodict
|
15 |
|
16 |
+
|
17 |
+
class PaperQA:
|
18 |
+
def __init__(self):
|
19 |
+
self.qa_graph = None
|
20 |
+
self.current_file = None
|
21 |
+
|
22 |
+
class State(TypedDict):
|
23 |
+
question: str
|
24 |
+
context: List[Document]
|
25 |
+
answer: str
|
26 |
+
|
27 |
+
def get_extra_docs(self, file_name):
|
28 |
+
# TODO: Add the code to extract the title, authors, and abstract from the PDF file
|
29 |
+
client = GrobidClient(config_path="./config.json")
|
30 |
+
information = client.process_pdf(
|
31 |
+
"processHeaderDocument",
|
32 |
+
file_name,
|
33 |
+
generateIDs=False,
|
34 |
+
consolidate_header=False,
|
35 |
+
consolidate_citations=False,
|
36 |
+
include_raw_citations=False,
|
37 |
+
include_raw_affiliations=False,
|
38 |
+
tei_coordinates=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
segment_sentences=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
+
dict_information = xmltodict.parse(information[2])
|
42 |
+
title = dict_information["tei"]["teiHeader"]["fileDesc"]["titleStmt"]["title"]
|
43 |
+
abstract = dict_information["tei"]["teiHeader"]["profileDesc"]["abstract"]["p"]
|
44 |
+
return title
|
45 |
+
|
46 |
+
def initiate_graph(self, file):
|
47 |
+
if self.current_file != file.name:
|
48 |
+
self.qa_graph = None
|
49 |
+
self.current_file = file.name
|
50 |
+
|
51 |
+
loader = GenericLoader.from_filesystem(
|
52 |
+
file.name,
|
53 |
+
parser=GrobidParser(
|
54 |
+
segment_sentences=False,
|
55 |
+
grobid_server="https://jpangas-grobid-paper-extractor.hf.space/api/processFulltextDocument",
|
56 |
+
),
|
57 |
+
)
|
58 |
+
|
59 |
+
docs = loader.load()
|
60 |
+
|
61 |
+
embeddings = OpenAIEmbeddings()
|
62 |
+
vector_store = InMemoryVectorStore(embeddings)
|
63 |
+
|
64 |
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
65 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
66 |
+
chunk_size=1000, chunk_overlap=200, add_start_index=True
|
67 |
+
)
|
68 |
+
all_splits = text_splitter.split_documents(docs)
|
69 |
+
vector_store.add_documents(documents=all_splits)
|
70 |
+
prompt = hub.pull("rlm/rag-prompt")
|
71 |
+
|
72 |
+
def retrieve(state: self.State):
|
73 |
+
retrieved_docs = vector_store.similarity_search(state["question"])
|
74 |
+
return {"context": retrieved_docs}
|
75 |
+
|
76 |
+
def generate(state: self.State):
|
77 |
+
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
78 |
+
messages = prompt.invoke(
|
79 |
+
{"question": state["question"], "context": docs_content}
|
80 |
+
)
|
81 |
+
response = llm.invoke(messages)
|
82 |
+
return {"answer": response.content}
|
83 |
|
84 |
+
graph_builder = StateGraph(self.State).add_sequence([retrieve, generate])
|
85 |
+
graph_builder.add_edge(START, "retrieve")
|
86 |
+
self.qa_graph = graph_builder.compile()
|
87 |
|
88 |
+
name = file.name.split("/")[-1]
|
89 |
+
return f"The paper {name} has been loaded and is ready for questions!"
|
90 |
|
91 |
+
def answer_question(self, question, history):
|
92 |
+
if self.qa_graph is None:
|
93 |
+
return "Please upload a PDF file first and wait for it to be loaded!"
|
94 |
|
95 |
+
response = self.qa_graph.invoke({"question": question})
|
96 |
+
return response["answer"]
|
97 |
|
98 |
+
def slow_echo(self, message, history):
|
99 |
+
answer = self.answer_question(message, history)
|
100 |
+
if answer == "Please upload a PDF file first!":
|
101 |
+
yield answer
|
102 |
+
return
|
103 |
|
104 |
+
for i in range(len(answer)):
|
105 |
+
time.sleep(0.01)
|
106 |
+
yield answer[: i + 1]
|
|
|
|
|
107 |
|
|
|
|
|
|
|
108 |
|
109 |
def main():
|
110 |
+
qa_app = PaperQA()
|
111 |
+
|
112 |
with gr.Blocks() as demo:
|
113 |
file_input = gr.File(
|
114 |
+
label="Upload a research paper as a PDF file and wait for it to be loaded",
|
115 |
file_types=[".pdf"],
|
116 |
)
|
117 |
|
|
|
119 |
label="Status of Upload", value="No Paper Uploaded", interactive=False
|
120 |
)
|
121 |
|
122 |
+
chat_interface = gr.ChatInterface(qa_app.slow_echo, type="messages")
|
123 |
+
|
124 |
+
file_input.upload(fn=qa_app.initiate_graph, inputs=file_input, outputs=textbox)
|
125 |
|
126 |
+
demo.launch()
|
127 |
|
|
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
main()
|