|
from typing import Any, Optional |
|
|
|
import lightning as L |
|
import torch |
|
import torch.nn.functional as F |
|
from lightning.pytorch.utilities.types import OptimizerLRScheduler |
|
|
|
import fish_speech.utils as utils |
|
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID |
|
from fish_speech.models.text2semantic.llama import NaiveTransformer |
|
|
|
log = utils.RankedLogger(__name__, rank_zero_only=True) |
|
|
|
|
|
class TextToSemantic(L.LightningModule): |
|
def __init__( |
|
self, |
|
model: NaiveTransformer, |
|
optimizer: Any, |
|
lr_scheduler: Any, |
|
): |
|
super().__init__() |
|
|
|
self.model = model |
|
self.optimizer_builder = optimizer |
|
self.lr_scheduler_builder = lr_scheduler |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
def on_save_checkpoint(self, checkpoint): |
|
|
|
state_dict = checkpoint["state_dict"] |
|
use_lora = any("lora" in name for name in state_dict.keys()) |
|
if not use_lora: |
|
return |
|
|
|
for name in list(state_dict.keys()): |
|
if "lora" not in name: |
|
state_dict.pop(name) |
|
|
|
def configure_optimizers(self) -> OptimizerLRScheduler: |
|
|
|
weight_decay_parameters, other_parameters = [], [] |
|
for name, param in self.named_parameters(): |
|
if ".bias" in name or "norm.weight" in name or ".embeddings." in name: |
|
other_parameters.append(param) |
|
else: |
|
weight_decay_parameters.append(param) |
|
|
|
optimizer = self.optimizer_builder( |
|
[ |
|
{"params": weight_decay_parameters}, |
|
{"params": other_parameters, "weight_decay": 0.0}, |
|
] |
|
) |
|
|
|
|
|
for i in optimizer.param_groups: |
|
log.info( |
|
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters" |
|
) |
|
|
|
lr_scheduler = self.lr_scheduler_builder(optimizer) |
|
|
|
return { |
|
"optimizer": optimizer, |
|
"lr_scheduler": { |
|
"scheduler": lr_scheduler, |
|
"interval": "step", |
|
}, |
|
} |
|
|
|
|
|
def get_batch_logps( |
|
self, |
|
logits: torch.FloatTensor, |
|
labels: torch.LongTensor, |
|
average_log_prob: bool = False, |
|
) -> torch.FloatTensor: |
|
"""Compute the log probabilities of the given labels under the given logits. |
|
|
|
Args: |
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size) |
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size) |
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. |
|
|
|
Returns: |
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. |
|
""" |
|
assert logits.shape[:-1] == labels.shape |
|
|
|
labels = labels.clone() |
|
loss_mask = labels != -100 |
|
|
|
|
|
labels[labels == -100] = 0 |
|
|
|
per_token_logps = torch.gather( |
|
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1) |
|
).squeeze(-1) |
|
|
|
if average_log_prob: |
|
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) |
|
else: |
|
return (per_token_logps * loss_mask).sum(-1) |
|
|
|
def _step(self, batch, batch_idx, stage: str): |
|
is_train = stage == "train" |
|
|
|
if is_train: |
|
|
|
|
|
self.model.train() |
|
|
|
|
|
labels = batch["labels"] |
|
outputs = self.model( |
|
inp=batch["inputs"], |
|
key_padding_mask=batch["attention_masks"], |
|
) |
|
token_logits = outputs.token_logits |
|
codebook_logits = outputs.codebook_logits |
|
|
|
|
|
base_loss = F.cross_entropy( |
|
token_logits.view(-1, token_logits.size(-1)), |
|
labels[:, 0].reshape(-1), |
|
ignore_index=-100, |
|
) |
|
|
|
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT |
|
semantic_loss = F.cross_entropy( |
|
codebook_logits.view(-1, codebook_logits.size(-1)), |
|
codebook_labels.reshape(-1), |
|
ignore_index=-100, |
|
) |
|
|
|
loss = base_loss + semantic_loss |
|
|
|
self.log( |
|
f"{stage}/loss", |
|
loss, |
|
on_step=is_train, |
|
on_epoch=not is_train, |
|
prog_bar=True, |
|
logger=True, |
|
sync_dist=not is_train, |
|
) |
|
|
|
self.log( |
|
f"{stage}/base_loss", |
|
base_loss, |
|
on_step=is_train, |
|
on_epoch=not is_train, |
|
prog_bar=False, |
|
logger=True, |
|
sync_dist=not is_train, |
|
) |
|
|
|
self.log( |
|
f"{stage}/semantic_loss", |
|
semantic_loss, |
|
on_step=is_train, |
|
on_epoch=not is_train, |
|
prog_bar=False, |
|
logger=True, |
|
sync_dist=not is_train, |
|
) |
|
|
|
|
|
accuracy = self.get_accuracy(codebook_logits, codebook_labels) |
|
self.log( |
|
f"{stage}/top_5_accuracy", |
|
accuracy, |
|
on_step=is_train, |
|
on_epoch=not is_train, |
|
prog_bar=True, |
|
logger=True, |
|
sync_dist=not is_train, |
|
) |
|
|
|
return loss |
|
|
|
def get_accuracy(self, logits, labels): |
|
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID) |
|
if mask.sum() == 0: |
|
return torch.tensor(0.0, device=logits.device) |
|
|
|
_, indices = logits.topk(5, dim=-1) |
|
correct = indices.eq(labels.unsqueeze(-1)) |
|
correct[~mask] = 0 |
|
correct = correct.sum() |
|
accuracy = correct / mask.sum() |
|
|
|
return accuracy |
|
|
|
def training_step(self, batch, batch_idx): |
|
return self._step(batch, batch_idx, "train") |
|
|
|
def validation_step(self, batch, batch_idx): |
|
return self._step(batch, batch_idx, "val") |
|
|