File size: 10,634 Bytes
f7cbe40 f8c8a8b f7cbe40 f8c8a8b f7cbe40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import streamlit as st
import sqlite3
from hashlib import sha256
import streamlit as st
from langchain_community.embeddings import LlamaCppEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains.llm import LLMChain
from langchain_community.llms import LlamaCpp
from langchain.chains import LLMChain
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.documents import Document
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from datetime import date
# Create a SQLite database and table
conn = sqlite3.connect("user_credentials.db")
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
username TEXT PRIMARY KEY,
password TEXT
)
''')
conn.commit()
if 'embeddings' not in st.session_state:
st.session_state.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
)
def get_similar_docs(query):
db = FAISS.load_local('faiss_index',st.session_state.embeddings)
docs = db.similarity_search_with_score(query,100)
return docs
def format_docs(docs):
return " ".join(doc.page_content for doc in docs)
def get_advice_from_llm(query):
db = FAISS.load_local(st.session_state.username,st.session_state.embeddings)
retriever = db.as_retriever()
llm = LlamaCpp(model_path="./tinyllama-1.1b-chat-v1.0.Q8_0.gguf",n_ctx = 2048)
chat_history_str = "\n".join(["<|im_start|>" + entry[0]+ entry[1] +"<|im_emd|>\n" for entry in st.session_state['chat_history']])
template = """"
<|im_start|>system
{context}""" + chat_history_str + "<|im_end|>"\
"""
<|im_start|>user{input}<|im_end|>
<|im_start|>assistant
"""
prompt = PromptTemplate(input_variables=["input","context"], template=template)
llm_chain = LLMChain(llm=llm, prompt=prompt)
rag_chain = ( {"context": retriever|format_docs, "input": RunnablePassthrough()}| llm_chain)
answer = rag_chain.invoke(query)
return answer
def vectordb_entry():
loader = TextLoader(f"./{st.session_state.username}.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=10)
docs = text_splitter.split_documents(documents)
db = FAISS.load_local(st.session_state.username,st.session_state.embeddings)
db.add_documents(docs)
db.save_local(st.session_state.username)
def save_into_text_file(file_path,text):
with open(file_path, 'w') as file:
file.write(text)
print(f"String saved to {file_path}")
def journal():
messages = st.container(height=600)
query = st.chat_input("Need some advice?")
if 'input_key' not in st.session_state:
st.session_state.input_key = 0
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if query:
answer = get_advice_from_llm(query)
st.session_state.chat_history.append(("user", query))
st.session_state.chat_history.append(("assistant", answer['text']))
st.session_state.input_key += 1
if 'chat_history' in st.session_state and st.session_state.chat_history:
for speaker, message in st.session_state.chat_history:
if speaker == "user":
who = "You"
else:
who = "JournaLLM"
messages.chat_message(speaker).write(who + ': '+ str(message))
if st.button('Reset Chat'):
st.session_state.chat_history = []
st.session_state.input_key += 1
st.experimental_rerun()
# Function to hash passwords
def hash_password(password):
return sha256(password.encode()).hexdigest()
# Function to check login credentials
def authenticate(username, password):
hashed_password = hash_password(password)
cursor.execute("SELECT * FROM users WHERE username=? AND password=?", (username, hashed_password))
return cursor.fetchone() is not None
# Function to add a new user to the database
def add_user(username, password):
hashed_password = hash_password(password)
try:
cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hashed_password))
conn.commit()
return True # User added successfully
except sqlite3.IntegrityError:
return False # Username already exists
# Streamlit Login Page
def login_page():
st.title("Login Page")
un = st.text_input("Username:")
pw = st.text_input("Password:", type="password")
if un and pw:
st.session_state['username'] = un
st.session_state['password'] = pw
if st.button("Login"):
if not st.session_state['username'] or not st.session_state['password']:
st.error("Both username and password are required.")
elif authenticate(st.session_state['username'], st.session_state['password']):
create_table()
st.success("Login successful!")
else:
st.error("Invalid credentials. Please try again.")
# Streamlit Signup Page
def signup_page():
st.title("Signup Page")
new_username = st.text_input("New Username:")
new_password = st.text_input("New Password:", type="password")
if st.button("Signup"):
if not new_username or not new_password:
st.error("Both username and password are required.")
else:
result = add_user(new_username, new_password)
if result:
file_path = f"{new_username}.txt"
text = "I've started writing my journal"
# Open the file in write mode and write the string
with open(file_path, 'w') as file:
file.write(text)
print(f"String saved to {file_path}")
loader = TextLoader(f"./{new_username}.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
)
db = FAISS.from_documents(docs,embeddings)
db.save_local(new_username)
st.success("Signup successful! You can now login.")
else:
st.error("Username already exists. Please choose a different username.")
def create_table():
conn = sqlite3.connect(f'{st.session_state.username}_entries.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS entries (
id INTEGER PRIMARY KEY AUTOINCREMENT,
date TEXT,
notes TEXT
)
''')
conn.commit()
conn.close()
# Function to insert data into the SQLite database
def insert_data(date, notes):
conn = sqlite3.connect(f'{st.session_state.username}_entries.db')
cursor = conn.cursor()
cursor.execute('''
INSERT INTO entries (date, notes)
VALUES (?, ?)
''', (date, notes))
conn.commit()
conn.close()
# Function to retrieve data for a selected date
def retrieve_data(selected_date):
conn = sqlite3.connect(f'{st.session_state.username}_entries.db')
cursor = conn.cursor()
cursor.execute('''
SELECT date, notes FROM entries WHERE date = ?
''', (selected_date,))
data = cursor.fetchall()
conn.close()
return data
def entry():
st.title('JournaLLM')
st.write('Welcome to JournaLLM, \
your personal space for mindful \
reflection and goal tracking! This app is designed to help you \
seamlessly capture your daily thoughts, \
set meaningful goals, and track your progress.')
c1,c2 = st.columns(2)
if 'input_key' not in st.session_state:
st.session_state.input_key = 0
file_path = f"{st.session_state.username}.txt"
c1.write("Today's Entry")
text0 = c1.text_area("Enter text ")
# template = f'''Question: What happened on {date.today().strftime("%B %d, %Y")}?
# How did I feel on {date.today().strftime("%B %d, %Y")}?
# What were the events that happened on {date.today().strftime("%B %d, %Y")}?
# Describe your day, {date.today().strftime("%B %d, %Y")}. \n Answer: '''
text = f""" <|im_start|>system
What happened on {date.today().strftime("%B %d, %Y")}?
How did I feel on {date.today().strftime("%B %d, %Y")}?
What were the events that happened on {date.today().strftime("%B %d, %Y")}?
Describe your day, {date.today().strftime("%B %d, %Y")}.<|im_end|>
<|im_start|>user
{text0}<|im_end|>"""
if c1.button('Pen down') and text:
save_into_text_file(file_path,text)
vectordb_entry()
c1.write('Entry saved')
st.session_state.input_key += 1
#display previous entries
insert_data(date.today().strftime("%B %d, %Y"), text0)
#displaying
c2.write('View previous entries')
selected_date = c2.date_input('Select a date', date.today())
data = retrieve_data(selected_date.strftime("%B %d, %Y"))
if data:
en = c2.container(height=300)
for i in data:
en.write(i[1])
#[en.write(x[1]) for x in data]
else:
c2.info('No entries for the selected date.')
# Main Streamlit App
def main():
st.set_page_config(layout="wide")
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Login", "Signup","Journal","Advice"])
if page == "Login":
login_page()
elif page == "Signup":
signup_page()
elif page == "Journal":
if 'username' not in st.session_state:
st.write('Please login to continue.')
else:
st.write(f"Logged in as {st.session_state.username}")
entry()
elif page == "Advice":
if "username" not in st.session_state:
st.write('Please login to continue')
else:
st.write(f"Logged in as {st.session_state.username}")
journal()
if __name__ == "__main__":
main()
|