Spaces:
Runtime error
Runtime error
Updated to use the tdc_prompts
Browse files
app.py
CHANGED
|
@@ -2,24 +2,33 @@
|
|
| 2 |
# Make sure to add 'gradio', 'transformers', and 'torch' (or 'tensorflow'/'flax')
|
| 3 |
# to your requirements.txt file in the Hugging Face Space repository.
|
| 4 |
# gated model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import torch # Or tensorflow/flax depending on backend
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
import os
|
| 11 |
-
from huggingface_hub import login
|
| 12 |
-
|
| 13 |
hf_token = os.getenv("HF_TOKEN")
|
| 14 |
login(token=hf_token)
|
| 15 |
|
| 16 |
# --- Configuration ---
|
| 17 |
MODEL_NAME = "google/txgemma-2b-predict"
|
|
|
|
| 18 |
MODEL_CACHE = "model_cache" # Optional: define a cache directory
|
|
|
|
| 19 |
|
| 20 |
-
# --- Load Model and
|
| 21 |
-
# This might take some time the first time the space boots up
|
| 22 |
print(f"Loading model: {MODEL_NAME}...")
|
|
|
|
| 23 |
try:
|
| 24 |
# Check if GPU is available and use it, otherwise use CPU
|
| 25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -30,20 +39,47 @@ try:
|
|
| 30 |
print("Tokenizer loaded.")
|
| 31 |
|
| 32 |
# Load the model
|
| 33 |
-
# Use torch_dtype=torch.float16 for potentially faster inference and less memory on GPU
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
MODEL_NAME,
|
| 36 |
cache_dir=MODEL_CACHE,
|
| 37 |
-
# torch_dtype=torch.float16 if device == "cuda" else None, # Uncomment if using GPU and want float16
|
| 38 |
device_map="auto" # Automatically distribute model across available devices (GPU/CPU)
|
| 39 |
)
|
| 40 |
print("Model loaded.")
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
except Exception as e:
|
| 44 |
-
print(f"Error loading model or
|
| 45 |
-
|
| 46 |
-
raise gr.Error(f"Failed to load the model {MODEL_NAME}. Check logs for details. Error: {e}")
|
| 47 |
|
| 48 |
|
| 49 |
# --- Prediction Function ---
|
|
@@ -67,34 +103,37 @@ def predict(prompt, max_new_tokens=100, temperature=0.7):
|
|
| 67 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Move inputs to the model's device
|
| 68 |
|
| 69 |
# Generate text
|
| 70 |
-
# Use torch.no_grad() for inference to save memory and speed up
|
| 71 |
with torch.no_grad():
|
| 72 |
outputs = model.generate(
|
| 73 |
**inputs,
|
| 74 |
max_new_tokens=int(max_new_tokens), # Ensure it's an integer
|
| 75 |
temperature=float(temperature), # Ensure it's a float
|
| 76 |
-
do_sample=True
|
| 77 |
-
pad_token_id=tokenizer.eos_token_id # Set pad token id
|
| 78 |
)
|
| 79 |
|
| 80 |
# Decode the generated tokens
|
| 81 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
-
print(f"Generated text: {generated_text}")
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
# Note: This basic removal might not be perfect for all cases.
|
| 86 |
if generated_text.startswith(prompt):
|
| 87 |
-
# Add a small buffer in case of slight variations
|
| 88 |
prompt_length = len(prompt)
|
| 89 |
-
result_text = generated_text[prompt_length:].lstrip()
|
| 90 |
else:
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return result_text
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
print(f"Error during prediction: {e}")
|
| 97 |
-
# Return a user-friendly error message
|
| 98 |
return f"An error occurred during generation: {e}"
|
| 99 |
|
| 100 |
# --- Gradio Interface ---
|
|
@@ -104,8 +143,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 104 |
f"""
|
| 105 |
# 🤖 TXGemma-2B-Predict Text Generation
|
| 106 |
|
| 107 |
-
Enter a prompt below and the model ({MODEL_NAME}) will generate text based on it.
|
| 108 |
-
Adjust the parameters for different results.
|
| 109 |
"""
|
| 110 |
)
|
| 111 |
with gr.Row():
|
|
@@ -118,19 +157,19 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 118 |
with gr.Row():
|
| 119 |
max_tokens_slider = gr.Slider(
|
| 120 |
minimum=10,
|
| 121 |
-
maximum=500,
|
| 122 |
value=100,
|
| 123 |
step=10,
|
| 124 |
label="Max New Tokens",
|
| 125 |
info="Maximum number of tokens to generate after the prompt."
|
| 126 |
)
|
| 127 |
temperature_slider = gr.Slider(
|
| 128 |
-
minimum=0.
|
| 129 |
maximum=1.5,
|
| 130 |
value=0.7,
|
| 131 |
-
step=0.
|
| 132 |
label="Temperature",
|
| 133 |
-
info="Controls randomness
|
| 134 |
)
|
| 135 |
submit_button = gr.Button("Generate Text", variant="primary")
|
| 136 |
with gr.Column(scale=3):
|
|
@@ -148,16 +187,21 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 148 |
api_name="predict" # Name for API endpoint if needed
|
| 149 |
)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
# --- Launch the App ---
|
| 160 |
print("Launching Gradio app...")
|
| 161 |
-
# share=True creates a public link (useful for testing but remove/set to False for permanent spaces if not needed)
|
| 162 |
# queue() enables handling multiple users concurrently
|
| 163 |
demo.queue().launch(debug=True) # Set debug=False for production
|
|
|
|
|
|
| 2 |
# Make sure to add 'gradio', 'transformers', and 'torch' (or 'tensorflow'/'flax')
|
| 3 |
# to your requirements.txt file in the Hugging Face Space repository.
|
| 4 |
# gated model
|
| 5 |
+
# Set Hugging Face token if needed (for gated models, though Llama 3.1 might not require it after initial access grant)
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
|
| 8 |
+
# app.py for Hugging Face Space
|
| 9 |
+
# Make sure to add 'gradio', 'transformers', 'torch' (or 'tensorflow'/'flax'),
|
| 10 |
+
# and 'huggingface_hub' to your requirements.txt file in the Hugging Face Space repository.
|
| 11 |
+
|
| 12 |
import gradio as gr
|
| 13 |
import torch # Or tensorflow/flax depending on backend
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 15 |
+
from huggingface_hub import hf_hub_download # Import hub download function
|
| 16 |
+
import json # Import json library
|
| 17 |
+
import os # Import os library for path joining
|
| 18 |
|
| 19 |
+
# --- hf lpgin ---
|
|
|
|
|
|
|
|
|
|
| 20 |
hf_token = os.getenv("HF_TOKEN")
|
| 21 |
login(token=hf_token)
|
| 22 |
|
| 23 |
# --- Configuration ---
|
| 24 |
MODEL_NAME = "google/txgemma-2b-predict"
|
| 25 |
+
PROMPT_FILENAME = "tdc_prompts.json"
|
| 26 |
MODEL_CACHE = "model_cache" # Optional: define a cache directory
|
| 27 |
+
MAX_EXAMPLES = 10 # Limit the number of examples loaded from the JSON
|
| 28 |
|
| 29 |
+
# --- Load Model, Tokenizer, and Prompts ---
|
|
|
|
| 30 |
print(f"Loading model: {MODEL_NAME}...")
|
| 31 |
+
tdc_prompts_data = [] # Initialize empty list for prompts
|
| 32 |
try:
|
| 33 |
# Check if GPU is available and use it, otherwise use CPU
|
| 34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 39 |
print("Tokenizer loaded.")
|
| 40 |
|
| 41 |
# Load the model
|
|
|
|
| 42 |
model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
MODEL_NAME,
|
| 44 |
cache_dir=MODEL_CACHE,
|
|
|
|
| 45 |
device_map="auto" # Automatically distribute model across available devices (GPU/CPU)
|
| 46 |
)
|
| 47 |
print("Model loaded.")
|
| 48 |
+
|
| 49 |
+
# Download and load the prompts JSON file
|
| 50 |
+
print(f"Downloading {PROMPT_FILENAME}...")
|
| 51 |
+
prompts_file_path = hf_hub_download(
|
| 52 |
+
repo_id=MODEL_NAME,
|
| 53 |
+
filename=PROMPT_FILENAME,
|
| 54 |
+
cache_dir=MODEL_CACHE,
|
| 55 |
+
# force_download=True, # Uncomment to force redownload if needed
|
| 56 |
+
)
|
| 57 |
+
print(f"{PROMPT_FILENAME} downloaded to: {prompts_file_path}")
|
| 58 |
+
|
| 59 |
+
# Load the JSON data
|
| 60 |
+
with open(prompts_file_path, 'r') as f:
|
| 61 |
+
tdc_prompts_data = json.load(f)
|
| 62 |
+
print(f"Loaded {len(tdc_prompts_data)} prompts from {PROMPT_FILENAME}.")
|
| 63 |
+
|
| 64 |
+
# --- Prepare examples for Gradio ---
|
| 65 |
+
# ASSUMPTION: tdc_prompts.json is a list of objects, each with at least a 'prompt' key.
|
| 66 |
+
# We'll use default values for max_tokens and temperature for the examples.
|
| 67 |
+
# Modify this logic if the JSON structure is different.
|
| 68 |
+
if isinstance(tdc_prompts_data, list):
|
| 69 |
+
# Limit the number of examples shown in the UI
|
| 70 |
+
examples_list = [
|
| 71 |
+
[item.get("prompt", "Missing prompt"), 100, 0.7] # Default max_tokens=100, temp=0.7
|
| 72 |
+
for item in tdc_prompts_data[:MAX_EXAMPLES]
|
| 73 |
+
if isinstance(item, dict) and "prompt" in item # Ensure item is dict and has 'prompt'
|
| 74 |
+
]
|
| 75 |
+
else:
|
| 76 |
+
print(f"Warning: {PROMPT_FILENAME} does not contain a list. Cannot load examples.")
|
| 77 |
+
examples_list = [] # Fallback to empty examples
|
| 78 |
+
|
| 79 |
|
| 80 |
except Exception as e:
|
| 81 |
+
print(f"Error loading model, tokenizer, or prompts: {e}")
|
| 82 |
+
raise gr.Error(f"Failed during setup. Check logs for details. Error: {e}")
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
# --- Prediction Function ---
|
|
|
|
| 103 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Move inputs to the model's device
|
| 104 |
|
| 105 |
# Generate text
|
|
|
|
| 106 |
with torch.no_grad():
|
| 107 |
outputs = model.generate(
|
| 108 |
**inputs,
|
| 109 |
max_new_tokens=int(max_new_tokens), # Ensure it's an integer
|
| 110 |
temperature=float(temperature), # Ensure it's a float
|
| 111 |
+
do_sample=True if float(temperature) > 0 else False, # Only sample if temp > 0
|
| 112 |
+
pad_token_id=tokenizer.eos_token_id # Set pad token id
|
| 113 |
)
|
| 114 |
|
| 115 |
# Decode the generated tokens
|
| 116 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 117 |
+
print(f"Generated text (raw): {generated_text}")
|
| 118 |
|
| 119 |
+
# Remove the prompt from the beginning of the generated text
|
|
|
|
| 120 |
if generated_text.startswith(prompt):
|
|
|
|
| 121 |
prompt_length = len(prompt)
|
| 122 |
+
result_text = generated_text[prompt_length:].lstrip()
|
| 123 |
else:
|
| 124 |
+
# Handle cases where the model might slightly alter the prompt start
|
| 125 |
+
# This is a basic check; more robust checks might be needed
|
| 126 |
+
common_prefix = os.path.commonprefix([prompt, generated_text])
|
| 127 |
+
if len(common_prefix) > len(prompt) * 0.8: # If >80% of prompt matches start
|
| 128 |
+
result_text = generated_text[len(common_prefix):].lstrip()
|
| 129 |
+
else:
|
| 130 |
+
result_text = generated_text # Assume prompt is not included
|
| 131 |
+
|
| 132 |
+
print(f"Generated text (processed): {result_text}")
|
| 133 |
return result_text
|
| 134 |
|
| 135 |
except Exception as e:
|
| 136 |
print(f"Error during prediction: {e}")
|
|
|
|
| 137 |
return f"An error occurred during generation: {e}"
|
| 138 |
|
| 139 |
# --- Gradio Interface ---
|
|
|
|
| 143 |
f"""
|
| 144 |
# 🤖 TXGemma-2B-Predict Text Generation
|
| 145 |
|
| 146 |
+
Enter a prompt below or select an example, and the model ({MODEL_NAME}) will generate text based on it.
|
| 147 |
+
Adjust the parameters for different results. Examples loaded from `{PROMPT_FILENAME}`.
|
| 148 |
"""
|
| 149 |
)
|
| 150 |
with gr.Row():
|
|
|
|
| 157 |
with gr.Row():
|
| 158 |
max_tokens_slider = gr.Slider(
|
| 159 |
minimum=10,
|
| 160 |
+
maximum=500, # Adjust max limit if needed
|
| 161 |
value=100,
|
| 162 |
step=10,
|
| 163 |
label="Max New Tokens",
|
| 164 |
info="Maximum number of tokens to generate after the prompt."
|
| 165 |
)
|
| 166 |
temperature_slider = gr.Slider(
|
| 167 |
+
minimum=0.0, # Allow deterministic generation
|
| 168 |
maximum=1.5,
|
| 169 |
value=0.7,
|
| 170 |
+
step=0.05, # Finer control for temperature
|
| 171 |
label="Temperature",
|
| 172 |
+
info="Controls randomness (0=deterministic, >0=random)."
|
| 173 |
)
|
| 174 |
submit_button = gr.Button("Generate Text", variant="primary")
|
| 175 |
with gr.Column(scale=3):
|
|
|
|
| 187 |
api_name="predict" # Name for API endpoint if needed
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Use the loaded examples if available
|
| 191 |
+
if examples_list:
|
| 192 |
+
gr.Examples(
|
| 193 |
+
examples=examples_list,
|
| 194 |
+
inputs=[prompt_input, max_tokens_slider, temperature_slider], # Match inputs to the predict function
|
| 195 |
+
outputs=output_text,
|
| 196 |
+
fn=predict, # The function to run when an example is clicked
|
| 197 |
+
cache_examples=False # Caching might be slow/problematic for LLMs
|
| 198 |
+
)
|
| 199 |
+
else:
|
| 200 |
+
gr.Markdown("_(Could not load examples from JSON file.)_")
|
| 201 |
+
|
| 202 |
|
| 203 |
# --- Launch the App ---
|
| 204 |
print("Launching Gradio app...")
|
|
|
|
| 205 |
# queue() enables handling multiple users concurrently
|
| 206 |
demo.queue().launch(debug=True) # Set debug=False for production
|
| 207 |
+
|