import streamlit as st from PIL import Image from transformers import pipeline import numpy as np import cv2 import matplotlib.cm as cm import base64 from io import BytesIO st.set_page_config(layout="wide") with open("styles.css") as f: st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True) st.markdown("<h1 class='title'>Segformer Semantic Segmentation</h1>", unsafe_allow_html=True) st.markdown(""" <div class='text-center'> This app uses the Segformer deep learning model to perform semantic segmentation on <b style='color: red; font-weight: 40px;'>road images</b>. The Transformer-based model is trained on the CityScapes dataset which contains images of urban road scenes. Upload a road scene and the app will return the image with semantic segmentation applied. </div> """, unsafe_allow_html=True) group_members = ["Ang Ngo Ching, Josh Darren W.", "Bautista, Ryan Matthew M.", "Lacuesta, Angelo Giuseppe M.", "Reyes, Kenwin Hans", "Ting, Sidney Mitchell O."] st.markdown(""" <h3 class='text-center' style='margin-top: 0.5rem;'> âšī¸ You can get sample images of road scenes in this <a href='https://drive.google.com/drive/folders/1202EMeXAHnN18NuhJKWWme34vg0V-svY?fbclid=IwAR3kyjGS895nOBKi9aGT_P4gLX9jvSNrV5b5y3GH49t2Pvg2sZSRA58LLxs' target='_blank'>link</a>. </h3>""", unsafe_allow_html=True) st.markdown(""" <h3 class='text-center' style='margin-top: 0.5rem;'> đ Read more about the paper <a href='https://arxiv.org/pdf/2105.15203.pdf' target='_blank'>here</a>. </h3>""", unsafe_allow_html=True) label_colors = {} def draw_masks_fromDict(image, results): masked_image = image.copy() colormap = cm.get_cmap('nipy_spectral') for i, result in enumerate(results): mask = np.array(result['mask']) mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) color = colormap(i / len(results))[:3] color = tuple(int(c * 255) for c in color) masked_image = np.where(mask, color, masked_image) label_colors[color] = result['label'] masked_image = masked_image.astype(np.uint8) return cv2.addWeighted(image, 0.3, masked_image, 0.7, 0) uploaded_file = st.file_uploader("", type=["jpg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) col1, col2 = st.columns(2) with col1: st.image(image, caption='Uploaded Image.', use_column_width=True) with st.spinner('Processing...'): semantic_segmentation = pipeline("image-segmentation", f"nvidia/segformer-b1-finetuned-cityscapes-1024-1024") segmentation_results = semantic_segmentation(image) image_with_masks = draw_masks_fromDict(np.array(image)[:, :, :3], segmentation_results) image_with_masks_pil = Image.fromarray(image_with_masks, 'RGB') with col2: st.image(image_with_masks_pil, caption='Segmented Image.', use_column_width=True) html_segment = "<div class='container'><h3>Labels:</h3>" for color, label in label_colors.items(): html_segment += f"<div style='display: flex; align-items: center; margin-bottom: 0.5rem;'><span style='display: inline-block; width: 20px; height: 20px; background-color: rgb{color}; margin-right: 1rem; border-radius: 10px;'></span><p style='margin: 0;'>{label}</p></div>" buffered = BytesIO() image_with_masks_pil.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() html_segment += f'<a href="data:file/png;base64,{img_str}" download="segmented_{uploaded_file.name}">Download Segmented Image</a>' st.markdown(html_segment + "</div>", unsafe_allow_html=True) html_members = "<hr><div style='display: flex; justify-content: center;'><h3>Group 6 - Members:</h3><ul>" for member in group_members: html_members += "<li>" + member + "</li>" st.markdown(html_members + "</ul></div>", unsafe_allow_html=True)