Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	
		Atin Sakkeer Hussain
		
	commited on
		
		
					Commit 
							
							·
						
						c399026
	
1
								Parent(s):
							
							b5e6f78
								
Add app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,382 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch.cuda
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import gradio as gr
         | 
| 4 | 
            +
            import mdtex2html
         | 
| 5 | 
            +
            import tempfile
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            import scipy
         | 
| 8 | 
            +
            import argparse
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from llama.m2ugen import M2UGen
         | 
| 11 | 
            +
            import llama
         | 
| 12 | 
            +
            import numpy as np
         | 
| 13 | 
            +
            import os
         | 
| 14 | 
            +
            import torch
         | 
| 15 | 
            +
            import torchaudio
         | 
| 16 | 
            +
            import torchvision.transforms as transforms
         | 
| 17 | 
            +
            import av
         | 
| 18 | 
            +
            import subprocess
         | 
| 19 | 
            +
            import librosa
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            parser = argparse.ArgumentParser()
         | 
| 22 | 
            +
            parser.add_argument(
         | 
| 23 | 
            +
                "--model", default="./ckpts/checkpoint.pth", type=str,
         | 
| 24 | 
            +
                help="Name of or path to M2UGen pretrained checkpoint",
         | 
| 25 | 
            +
            )
         | 
| 26 | 
            +
            parser.add_argument(
         | 
| 27 | 
            +
                "--llama_type", default="7B", type=str,
         | 
| 28 | 
            +
                help="Type of llama original weight",
         | 
| 29 | 
            +
            )
         | 
| 30 | 
            +
            parser.add_argument(
         | 
| 31 | 
            +
                "--llama_dir", default="/path/to/llama", type=str,
         | 
| 32 | 
            +
                help="Path to LLaMA pretrained checkpoint",
         | 
| 33 | 
            +
            )
         | 
| 34 | 
            +
            parser.add_argument(
         | 
| 35 | 
            +
                "--mert_path", default="m-a-p/MERT-v1-330M", type=str,
         | 
| 36 | 
            +
                help="Path to MERT pretrained checkpoint",
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            parser.add_argument(
         | 
| 39 | 
            +
                "--vit_path", default="m-a-p/MERT-v1-330M", type=str,
         | 
| 40 | 
            +
                help="Path to ViT pretrained checkpoint",
         | 
| 41 | 
            +
            )
         | 
| 42 | 
            +
            parser.add_argument(
         | 
| 43 | 
            +
                "--vivit_path", default="m-a-p/MERT-v1-330M", type=str,
         | 
| 44 | 
            +
                help="Path to ViViT pretrained checkpoint",
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
            parser.add_argument(
         | 
| 47 | 
            +
                "--knn_dir", default="./ckpts", type=str,
         | 
| 48 | 
            +
                help="Path to directory with KNN Index",
         | 
| 49 | 
            +
            )
         | 
| 50 | 
            +
            parser.add_argument(
         | 
| 51 | 
            +
                '--music_decoder', default="musicgen", type=str,
         | 
| 52 | 
            +
                help='Decoder to use musicgen/audioldm2')
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            parser.add_argument(
         | 
| 55 | 
            +
                '--music_decoder_path', default="facebook/musicgen-medium", type=str,
         | 
| 56 | 
            +
                help='Path to decoder to use musicgen/audioldm2')
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            args = parser.parse_args()
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            generated_audio_files = []
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            llama_type = args.llama_type
         | 
| 63 | 
            +
            llama_ckpt_dir = os.path.join(args.llama_dir, llama_type)
         | 
| 64 | 
            +
            llama_tokenzier_path = args.llama_dir
         | 
| 65 | 
            +
            model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            print("Loading Model Checkpoint")
         | 
| 68 | 
            +
            checkpoint = torch.load(args.model, map_location='cpu')
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            new_ckpt = {}
         | 
| 71 | 
            +
            for key, value in checkpoint['model'].items():
         | 
| 72 | 
            +
                if "generation_model" in key:
         | 
| 73 | 
            +
                    continue
         | 
| 74 | 
            +
                key = key.replace("module.", "")
         | 
| 75 | 
            +
                new_ckpt[key] = value
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            load_result = model.load_state_dict(new_ckpt, strict=False)
         | 
| 78 | 
            +
            assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
         | 
| 79 | 
            +
            model.eval()
         | 
| 80 | 
            +
            model.to("cuda")
         | 
| 81 | 
            +
            #model.generation_model.to("cuda")
         | 
| 82 | 
            +
            #model.mert_model.to("cuda")
         | 
| 83 | 
            +
            #model.vit_model.to("cuda")
         | 
| 84 | 
            +
            #model.vivit_model.to("cuda")
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            transform = transforms.Compose(
         | 
| 87 | 
            +
                [transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)])
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            def postprocess(self, y):
         | 
| 91 | 
            +
                if y is None:
         | 
| 92 | 
            +
                    return []
         | 
| 93 | 
            +
                for i, (message, response) in enumerate(y):
         | 
| 94 | 
            +
                    y[i] = (
         | 
| 95 | 
            +
                        None if message is None else mdtex2html.convert((message)),
         | 
| 96 | 
            +
                        None if response is None else mdtex2html.convert(response),
         | 
| 97 | 
            +
                    )
         | 
| 98 | 
            +
                return y
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            gr.Chatbot.postprocess = postprocess
         | 
| 102 | 
            +
             | 
| 103 | 
            +
             | 
| 104 | 
            +
            def parse_text(text, image_path, video_path, audio_path):
         | 
| 105 | 
            +
                """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
         | 
| 106 | 
            +
                outputs = text
         | 
| 107 | 
            +
                lines = text.split("\n")
         | 
| 108 | 
            +
                lines = [line for line in lines if line != ""]
         | 
| 109 | 
            +
                count = 0
         | 
| 110 | 
            +
                for i, line in enumerate(lines):
         | 
| 111 | 
            +
                    if "```" in line:
         | 
| 112 | 
            +
                        count += 1
         | 
| 113 | 
            +
                        items = line.split('`')
         | 
| 114 | 
            +
                        if count % 2 == 1:
         | 
| 115 | 
            +
                            lines[i] = f'<pre><code class="language-{items[-1]}">'
         | 
| 116 | 
            +
                        else:
         | 
| 117 | 
            +
                            lines[i] = f'<br></code></pre>'
         | 
| 118 | 
            +
                    else:
         | 
| 119 | 
            +
                        if i > 0:
         | 
| 120 | 
            +
                            if count % 2 == 1:
         | 
| 121 | 
            +
                                line = line.replace("`", "\`")
         | 
| 122 | 
            +
                                line = line.replace("<", "<")
         | 
| 123 | 
            +
                                line = line.replace(">", ">")
         | 
| 124 | 
            +
                                line = line.replace(" ", " ")
         | 
| 125 | 
            +
                                line = line.replace("*", "*")
         | 
| 126 | 
            +
                                line = line.replace("_", "_")
         | 
| 127 | 
            +
                                line = line.replace("-", "-")
         | 
| 128 | 
            +
                                line = line.replace(".", ".")
         | 
| 129 | 
            +
                                line = line.replace("!", "!")
         | 
| 130 | 
            +
                                line = line.replace("(", "(")
         | 
| 131 | 
            +
                                line = line.replace(")", ")")
         | 
| 132 | 
            +
                                line = line.replace("$", "$")
         | 
| 133 | 
            +
                            lines[i] = "<br>" + line
         | 
| 134 | 
            +
                text = "".join(lines) + "<br>"
         | 
| 135 | 
            +
                if image_path is not None:
         | 
| 136 | 
            +
                    text += f'<img src="./file={image_path}" style="display: inline-block;"><br>'
         | 
| 137 | 
            +
                    outputs = f'<Image>{image_path}</Image> ' + outputs
         | 
| 138 | 
            +
                if video_path is not None:
         | 
| 139 | 
            +
                    text += f' <video controls playsinline height="320" width="240" style="display: inline-block;"  src="./file={video_path}"></video6><br>'
         | 
| 140 | 
            +
                    outputs = f'<Video>{video_path}</Video> ' + outputs
         | 
| 141 | 
            +
                if audio_path is not None:
         | 
| 142 | 
            +
                    text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
         | 
| 143 | 
            +
                    outputs = f'<Audio>{audio_path}</Audio> ' + outputs
         | 
| 144 | 
            +
                # text = text[::-1].replace(">rb<", "", 1)[::-1]
         | 
| 145 | 
            +
                text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
         | 
| 146 | 
            +
                return text, outputs
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            def save_audio_to_local(audio, sec):
         | 
| 150 | 
            +
                global generated_audio_files
         | 
| 151 | 
            +
                if not os.path.exists('temp'):
         | 
| 152 | 
            +
                    os.mkdir('temp')
         | 
| 153 | 
            +
                filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
         | 
| 154 | 
            +
                if args.music_decoder == "audioldm2":
         | 
| 155 | 
            +
                    scipy.io.wavfile.write(filename, rate=16000, data=audio[0])
         | 
| 156 | 
            +
                else:
         | 
| 157 | 
            +
                    scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio)
         | 
| 158 | 
            +
                generated_audio_files.append(filename)
         | 
| 159 | 
            +
                return filename
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
            def parse_reponse(model_outputs, audio_length_in_s):
         | 
| 163 | 
            +
                response = ''
         | 
| 164 | 
            +
                text_outputs = []
         | 
| 165 | 
            +
                for output_i, p in enumerate(model_outputs):
         | 
| 166 | 
            +
                    if isinstance(p, str):
         | 
| 167 | 
            +
                        response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
         | 
| 168 | 
            +
                        response += '<br>'
         | 
| 169 | 
            +
                        text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), ''))
         | 
| 170 | 
            +
                    elif 'aud' in p.keys():
         | 
| 171 | 
            +
                        _temp_output = ''
         | 
| 172 | 
            +
                        for idx, m in enumerate(p['aud']):
         | 
| 173 | 
            +
                            if isinstance(m, str):
         | 
| 174 | 
            +
                                response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
         | 
| 175 | 
            +
                                response += '<br>'
         | 
| 176 | 
            +
                                _temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
         | 
| 177 | 
            +
                            else:
         | 
| 178 | 
            +
                                filename = save_audio_to_local(m, audio_length_in_s)
         | 
| 179 | 
            +
                                print(filename)
         | 
| 180 | 
            +
                                _temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
         | 
| 181 | 
            +
                                response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
         | 
| 182 | 
            +
                        text_outputs.append(_temp_output)
         | 
| 183 | 
            +
                    else:
         | 
| 184 | 
            +
                        pass
         | 
| 185 | 
            +
                response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
         | 
| 186 | 
            +
                return response, text_outputs
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            def reset_user_input():
         | 
| 190 | 
            +
                return gr.update(value='')
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            def reset_dialog():
         | 
| 194 | 
            +
                return [], []
         | 
| 195 | 
            +
             | 
| 196 | 
            +
             | 
| 197 | 
            +
            def reset_state():
         | 
| 198 | 
            +
                global generated_audio_files
         | 
| 199 | 
            +
                generated_audio_files = []
         | 
| 200 | 
            +
                return None, None, None, None, [], [], []
         | 
| 201 | 
            +
             | 
| 202 | 
            +
             | 
| 203 | 
            +
            def upload_image(conversation, chat_history, image_input):
         | 
| 204 | 
            +
                input_image = Image.open(image_input.name).resize(
         | 
| 205 | 
            +
                    (224, 224)).convert('RGB')
         | 
| 206 | 
            +
                input_image.save(image_input.name)  # Overwrite with smaller image.
         | 
| 207 | 
            +
                conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
         | 
| 208 | 
            +
                return conversation, chat_history + [input_image, ""]
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
            def read_video_pyav(container, indices):
         | 
| 212 | 
            +
                frames = []
         | 
| 213 | 
            +
                container.seek(0)
         | 
| 214 | 
            +
                for i, frame in enumerate(container.decode(video=0)):
         | 
| 215 | 
            +
                    frames.append(frame)
         | 
| 216 | 
            +
                chosen_frames = []
         | 
| 217 | 
            +
                for i in indices:
         | 
| 218 | 
            +
                    chosen_frames.append(frames[i])
         | 
| 219 | 
            +
                return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames])
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
         | 
| 223 | 
            +
                converted_len = int(clip_len * frame_sample_rate)
         | 
| 224 | 
            +
                if converted_len > seg_len:
         | 
| 225 | 
            +
                    converted_len = 0
         | 
| 226 | 
            +
                end_idx = np.random.randint(converted_len, seg_len)
         | 
| 227 | 
            +
                start_idx = end_idx - converted_len
         | 
| 228 | 
            +
                indices = np.linspace(start_idx, end_idx, num=clip_len)
         | 
| 229 | 
            +
                indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
         | 
| 230 | 
            +
                return indices
         | 
| 231 | 
            +
             | 
| 232 | 
            +
             | 
| 233 | 
            +
            def get_video_length(filename):
         | 
| 234 | 
            +
                print("Getting Video Length")
         | 
| 235 | 
            +
                result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
         | 
| 236 | 
            +
                                         "format=duration", "-of",
         | 
| 237 | 
            +
                                         "default=noprint_wrappers=1:nokey=1", filename],
         | 
| 238 | 
            +
                                        stdout=subprocess.PIPE,
         | 
| 239 | 
            +
                                        stderr=subprocess.STDOUT)
         | 
| 240 | 
            +
                return int(round(float(result.stdout)))
         | 
| 241 | 
            +
             | 
| 242 | 
            +
             | 
| 243 | 
            +
            def get_audio_length(filename):
         | 
| 244 | 
            +
                return int(round(librosa.get_duration(path=filename)))
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            def predict(
         | 
| 248 | 
            +
                    prompt_input,
         | 
| 249 | 
            +
                    image_path,
         | 
| 250 | 
            +
                    audio_path,
         | 
| 251 | 
            +
                    video_path,
         | 
| 252 | 
            +
                    chatbot,
         | 
| 253 | 
            +
                    top_p,
         | 
| 254 | 
            +
                    temperature,
         | 
| 255 | 
            +
                    history,
         | 
| 256 | 
            +
                    modality_cache,
         | 
| 257 | 
            +
                    audio_length_in_s):
         | 
| 258 | 
            +
                global generated_audio_files
         | 
| 259 | 
            +
                prompts = [llama.format_prompt(prompt_input)]
         | 
| 260 | 
            +
                prompts = [model.tokenizer(x).input_ids for x in prompts]
         | 
| 261 | 
            +
                print(image_path, audio_path, video_path)
         | 
| 262 | 
            +
                image, audio, video = None, None, None
         | 
| 263 | 
            +
                if image_path is not None:
         | 
| 264 | 
            +
                    image = transform(Image.open(image_path))
         | 
| 265 | 
            +
                if audio_path is not None:
         | 
| 266 | 
            +
                    sample_rate = 24000
         | 
| 267 | 
            +
                    waveform, sr = torchaudio.load(audio_path)
         | 
| 268 | 
            +
                    if sample_rate != sr:
         | 
| 269 | 
            +
                        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
         | 
| 270 | 
            +
                    audio = torch.mean(waveform, 0)
         | 
| 271 | 
            +
                if video_path is not None:
         | 
| 272 | 
            +
                    print("Opening Video")
         | 
| 273 | 
            +
                    container = av.open(video_path)
         | 
| 274 | 
            +
                    indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
         | 
| 275 | 
            +
                    video = read_video_pyav(container=container, indices=indices)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                if len(generated_audio_files) != 0:
         | 
| 278 | 
            +
                    audio_length_in_s = get_audio_length(generated_audio_files[-1])
         | 
| 279 | 
            +
                    sample_rate = 24000
         | 
| 280 | 
            +
                    waveform, sr = torchaudio.load(generated_audio_files[-1])
         | 
| 281 | 
            +
                    if sample_rate != sr:
         | 
| 282 | 
            +
                        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
         | 
| 283 | 
            +
                    audio = torch.mean(waveform, 0)
         | 
| 284 | 
            +
                    audio_length_in_s = int(len(audio)//sample_rate)
         | 
| 285 | 
            +
                    print(f"Audio Length: {audio_length_in_s}")
         | 
| 286 | 
            +
                if video_path is not None:
         | 
| 287 | 
            +
                    audio_length_in_s = get_video_length(video_path)
         | 
| 288 | 
            +
                    print(f"Video Length: {audio_length_in_s}")
         | 
| 289 | 
            +
                if audio_path is not None:
         | 
| 290 | 
            +
                    audio_length_in_s = get_audio_length(audio_path)
         | 
| 291 | 
            +
                    generated_audio_files.append(audio_path)
         | 
| 292 | 
            +
                    print(f"Audio Length: {audio_length_in_s}")
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                print(image, video, audio)
         | 
| 295 | 
            +
                response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
         | 
| 296 | 
            +
                                          audio_length_in_s=audio_length_in_s)
         | 
| 297 | 
            +
                print(response)
         | 
| 298 | 
            +
                response_chat, response_outputs = parse_reponse(response, audio_length_in_s)
         | 
| 299 | 
            +
                print('text_outputs: ', response_outputs)
         | 
| 300 | 
            +
                user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
         | 
| 301 | 
            +
                chatbot.append((user_chat, response_chat))
         | 
| 302 | 
            +
                history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
         | 
| 303 | 
            +
                return chatbot, history, modality_cache, None, None, None,
         | 
| 304 | 
            +
             | 
| 305 | 
            +
             | 
| 306 | 
            +
            with gr.Blocks() as demo:
         | 
| 307 | 
            +
                gr.HTML("""
         | 
| 308 | 
            +
                    <h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1>
         | 
| 309 | 
            +
                    <h3>This is the demo page of M<sup>2</sup>UGen, a Multimodal LLM capable of Music Understanding and Generation!</h3>
         | 
| 310 | 
            +
                    <div style="display: flex;"><a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
         | 
| 311 | 
            +
                    """)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                with gr.Row():
         | 
| 314 | 
            +
                    with gr.Column(scale=0.7, min_width=500):
         | 
| 315 | 
            +
                        with gr.Row():
         | 
| 316 | 
            +
                            chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=(
         | 
| 317 | 
            +
                            (os.path.join(os.path.dirname(__file__), 'user.png')),
         | 
| 318 | 
            +
                            (os.path.join(os.path.dirname(__file__), "bot.png")))).style(height=440)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                        with gr.Tab("User Input"):
         | 
| 321 | 
            +
                            with gr.Row(scale=3):
         | 
| 322 | 
            +
                                user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
         | 
| 323 | 
            +
                            with gr.Row(scale=3):
         | 
| 324 | 
            +
                                with gr.Column(scale=1):
         | 
| 325 | 
            +
                                    # image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
         | 
| 326 | 
            +
                                    image_path = gr.Image(type="filepath",
         | 
| 327 | 
            +
                                                          label="Image")  # .style(height=200)  # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
         | 
| 328 | 
            +
                                with gr.Column(scale=1):
         | 
| 329 | 
            +
                                    audio_path = gr.Audio(type='filepath')  # .style(height=200)
         | 
| 330 | 
            +
                                with gr.Column(scale=1):
         | 
| 331 | 
            +
                                    video_path = gr.Video()  # .style(height=200) # , value=None, interactive=True
         | 
| 332 | 
            +
                    with gr.Column(scale=0.3, min_width=300):
         | 
| 333 | 
            +
                        with gr.Group():
         | 
| 334 | 
            +
                            with gr.Accordion('Text Advanced Options', open=True):
         | 
| 335 | 
            +
                                top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
         | 
| 336 | 
            +
                                temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
         | 
| 337 | 
            +
                            with gr.Accordion('Audio Advanced Options', open=False):
         | 
| 338 | 
            +
                                audio_length_in_s = gr.Slider(5, 30, value=30, step=1, label="The audio length in seconds",
         | 
| 339 | 
            +
                                                              interactive=True)
         | 
| 340 | 
            +
                        with gr.Tab("Operation"):
         | 
| 341 | 
            +
                            with gr.Row(scale=1):
         | 
| 342 | 
            +
                                submitBtn = gr.Button(value="Submit & Run", variant="primary")
         | 
| 343 | 
            +
                            with gr.Row(scale=1):
         | 
| 344 | 
            +
                                emptyBtn = gr.Button("Clear History")
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                history = gr.State([])
         | 
| 347 | 
            +
                modality_cache = gr.State([])
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                submitBtn.click(
         | 
| 350 | 
            +
                    predict, [
         | 
| 351 | 
            +
                        user_input,
         | 
| 352 | 
            +
                        image_path,
         | 
| 353 | 
            +
                        audio_path,
         | 
| 354 | 
            +
                        video_path,
         | 
| 355 | 
            +
                        chatbot,
         | 
| 356 | 
            +
                        top_p,
         | 
| 357 | 
            +
                        temperature,
         | 
| 358 | 
            +
                        history,
         | 
| 359 | 
            +
                        modality_cache,
         | 
| 360 | 
            +
                        audio_length_in_s
         | 
| 361 | 
            +
                    ], [
         | 
| 362 | 
            +
                        chatbot,
         | 
| 363 | 
            +
                        history,
         | 
| 364 | 
            +
                        modality_cache,
         | 
| 365 | 
            +
                        image_path,
         | 
| 366 | 
            +
                        audio_path,
         | 
| 367 | 
            +
                        video_path
         | 
| 368 | 
            +
                    ],
         | 
| 369 | 
            +
                    show_progress=True
         | 
| 370 | 
            +
                )
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                submitBtn.click(reset_user_input, [], [user_input])
         | 
| 373 | 
            +
                emptyBtn.click(reset_state, outputs=[
         | 
| 374 | 
            +
                    image_path,
         | 
| 375 | 
            +
                    audio_path,
         | 
| 376 | 
            +
                    video_path,
         | 
| 377 | 
            +
                    chatbot,
         | 
| 378 | 
            +
                    history,
         | 
| 379 | 
            +
                    modality_cache
         | 
| 380 | 
            +
                ], show_progress=True)
         | 
| 381 | 
            +
             | 
| 382 | 
            +
            demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24000)
         | 
    	
        bot.png
    ADDED
    
    |   | 
    	
        user.png
    ADDED
    
    |   | 
 
			
