#%% import math from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np import urllib.request from PIL import Image import io import re import copy import os import cv2 import base64 from io import BytesIO import requests import openai from tenacity import retry, stop_after_attempt, wait_fixed from IPython.display import Markdown,display from rich.console import Console import json import os import sys #%% def visualize_subplots(images, cols=3): """ Visualize a list of images. Parameters: images (list): List of images. Each image can be a path to an image file or a numpy array. cols (int): Number of columns in the image grid. """ imgs_to_show = [] # Load images if they are paths, or directly use them if they are numpy arrays for img in images: if isinstance(img, str): # Assuming it's a file path img_data = plt.imread(img) elif isinstance(img, np.ndarray): # Assuming it's a numpy array img_data = img else: raise ValueError("Images should be either file paths or numpy arrays.") imgs_to_show.append(img_data) N = len(imgs_to_show) if N == 0: print("No images to display.") return rows = int(math.ceil(N / cols)) gs = gridspec.GridSpec(rows, cols) fig = plt.figure(figsize=(cols * 4, rows * 4)) for n in range(N): ax = fig.add_subplot(gs[n]) ax.imshow(imgs_to_show[n]) ax.set_title(f"Image {n + 1}") ax.axis('off') fig.tight_layout() plt.show() def set_openai_api_key_from_txt(key_path='./key.txt',VERBOSE=True): """ Set OpenAI API Key from a txt file """ with open(key_path, 'r') as f: OPENAI_API_KEY = f.read() openai.api_key = OPENAI_API_KEY if VERBOSE: print ("OpenAI API Key Ready from [%s]."%(key_path)) #%% class GPT4VisionClass: def __init__( self, gpt_model: str = "gpt-4-vision-preview", role_msg: str = "You are a helpful agent with vision capabilities; do not respond to objects not depicted in images.", # key_path='../key/rilab_key.txt', key=None, max_tokens = 512, temperature = 0.9, n = 1, stop = [], VERBOSE=True, image_max_size:int = 512, ): self.gpt_model = gpt_model self.role_msg = role_msg self.messages = [{"role": "system", "content": f"{role_msg}"}] self.init_messages = [{"role": "system", "content": f"{role_msg}"}] self.history = [{"role": "system", "content": f"{role_msg}"}] self.image_max_size = image_max_size # GPT-4 parameters self.max_tokens = max_tokens self.temperature = temperature self.n = n self.stop = stop self.VERBOSE = VERBOSE if self.VERBOSE: self.console = Console() self.response = None self.image_token_count = 0 self._setup_client_with_key(key) # self._setup_client(key_path) def _setup_client_with_key(self, key): if self.VERBOSE: self.console.print(f"[bold cyan]api key:[%s][/bold cyan]" % (key)) OPENAI_API_KEY = key self.client = openai.OpenAI(api_key=OPENAI_API_KEY) if self.VERBOSE: self.console.print( "[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]" % (self.gpt_model, self.role_msg) ) def _setup_client(self, key_path): if self.VERBOSE: self.console.print(f"[bold cyan]key_path:[%s][/bold cyan]" % (key_path)) with open(key_path, "r") as f: OPENAI_API_KEY = f.read() self.client = openai.OpenAI(api_key=OPENAI_API_KEY) if self.VERBOSE: self.console.print( "[bold cyan]Chat agent using [%s] initialized with the follow role:[%s][/bold cyan]" % (self.gpt_model, self.role_msg) ) def _backup_chat(self): self.init_messages = copy.copy(self.messages) def _get_response_content(self): if self.response: return self.response.choices[0].message.content else: return None def _get_response_status(self): if self.response: return self.response.choices[0].message.finish_reason else: return None def _encode_image_path(self, image_path): # with open(image_path, "rb") as image_file: image_pil = Image.open(image_path) image_pil.thumbnail( (self.image_max_size, self.image_max_size) ) image_pil_rgb = image_pil.convert("RGB") # change pil to base64 string img_buf = io.BytesIO() image_pil_rgb.save(img_buf, format="PNG") return base64.b64encode(img_buf.getvalue()).decode('utf-8') def _encode_image(self, image): """ Save the image to a temporary file and encode it to base64 """ # save Image:PIL to temp file cv2.imwrite("temp.jpg", np.array(image)) with open("temp.jpg", "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode('utf-8') os.remove("temp.jpg") return encoded_image def _count_image_tokens(self, width, height): h = ceil(height / 512) w = ceil(width / 512) n = w * h total = 85 + 170 * n return total def set_common_prompt(self, common_prompt): self.messages.append({"role": "system", "content": common_prompt}) # @retry(stop=stop_after_attempt(10), wait=wait_fixed(5)) def chat( self, query_text, image_paths=[], images=None, APPEND=True, PRINT_USER_MSG=True, PRINT_GPT_OUTPUT=True, RESET_CHAT=False, RETURN_RESPONSE=True, MAX_TOKENS = 512, VISUALIZE = False, DETAIL = "auto", CROP = None, ): """ image_paths: list of image paths images: list of images You can only provide either image_paths or image. """ if DETAIL: self.console.print(f"[bold cyan]DETAIL:[/bold cyan] {DETAIL}") self.detail = DETAIL content = [{"type": "text", "text": query_text}] content_image_not_encoded = [{"type": "text", "text": query_text}] # Prepare the history temp if image_paths is not None: local_imgs = [] for image_path_idx, image_path in enumerate(image_paths): with Image.open(image_path) as img: width, height = img.size if CROP: img = img.crop(CROP) width, height = img.size # convert PIL to numpy array local_imgs.append(np.array(img)) self.image_token_count += self._count_image_tokens(width, height) print(f"[{image_path_idx}/{len(image_paths)}] image_path: {image_path}") base64_image = self._encode_image_path(image_path) image_content = { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", "detail": self.detail } } image_content_in_numpy_array = { "type": "image_numpy", "image": np.array(Image.open(image_path)) } content.append(image_content) content_image_not_encoded.append(image_content_in_numpy_array) elif images is not None: local_imgs = [] for image_idx, image in enumerate(images): image_pil = Image.fromarray(image) if CROP: image_pil = image_pil.crop(CROP) local_imgs.append(image_pil) # width, height = image_pil.size image_pil.thumbnail( (self.image_max_size, self.image_max_size) ) width, height = image_pil.size self.image_token_count += self._count_image_tokens(width, height) self.console.print(f"[deep_sky_blue3][{image_idx+1}/{len(images)}] Image provided: [Original]: {image.shape}, [Downsize]: {image_pil.size}[/deep_sky_blue3]") base64_image = self._encode_image(image_pil) image_content = { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", "detail": self.detail } } image_content_in_numpy_array = { "type": "image_numpy", "image": image } content.append(image_content) content_image_not_encoded.append(image_content_in_numpy_array) else: self.console.print("[bold red]Neither image_paths nor images are provided.[/bold red]") if VISUALIZE: if image_paths: self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]") if CROP: visualize_subplots(local_imgs) else: visualize_subplots(image_paths) elif images: self.console.print("[deep_sky_blue3][VISUALIZE][/deep_sky_blue3]") if CROP: local_imgs = np.array(local_imgs) visualize_subplots(local_imgs) else: visualize_subplots(images) self.messages.append({"role": "user", "content": content}) self.history.append({"role": "user", "content": content_image_not_encoded}) payload = self.create_payload(model=self.gpt_model) self.response = self.client.chat.completions.create(**payload) if PRINT_USER_MSG: self.console.print("[deep_sky_blue3][USER_MSG][/deep_sky_blue3]") print(query_text) if PRINT_GPT_OUTPUT: self.console.print("[spring_green4][GPT_OUTPUT][/spring_green4]") print(self._get_response_content()) # Reset if RESET_CHAT: self.messages = self.init_messages # Return if RETURN_RESPONSE: return self._get_response_content() @retry(stop=stop_after_attempt(10), wait=wait_fixed(5)) def chat_multiple_images(self, image_paths, query_text, model="gpt-4-vision-preview", max_tokens=300): messages = [ { "role": "user", "content": [{"type": "text", "text": query_text}] } ] for image_path in image_paths: base64_image = self._encode_image(image_path) messages[0]["content"].append( {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} ) response = self.client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens ) return response @retry(stop=stop_after_attempt(10), wait=wait_fixed(5)) def generate_image(self, prompt, size="1024x1024", quality="standard", n=1): response = self.client.images.generate( model="dall-e-3", prompt=prompt, size=size, quality=quality, n=n ) return response def visualize_image(self, image_response): image_url = image_response.data[0].url # Open the URL and convert the image to a NumPy array with urllib.request.urlopen(image_url) as url: img = Image.open(url) img_array = np.array(img) plt.imshow(img_array) plt.axis('off') plt.show() def create_payload(self,model): payload = { "model": model, "messages": self.messages, "max_tokens": self.max_tokens, "temperature": self.temperature, "n": self.n } if len(self.stop) > 0: payload["stop"] = self.stop return payload def save_interaction(self, data, file_path: str = "./scripts/interaction_history.json"): """ Save the chat history to a JSON file. The history includes the user role, content, and images stored as NumPy arrays. """ self.history = data.copy() history_to_save = [] for entry in self.history: entry_to_save = { "role": entry["role"], "content": [] } # Check if 'content' is a string or a list if isinstance(entry["content"], str): entry_to_save["content"].append({"type": "text", "text": entry["content"]}) elif isinstance(entry["content"], list): for content in entry["content"]: if content["type"] == "text": entry_to_save["content"].append(content) elif content["type"] == "image_numpy": entry_to_save["content"].append({"type": "image_numpy", "image": content["image"].tolist()}) elif content["type"] == "image_url": entry_to_save["content"].append(content) history_to_save.append(entry_to_save) with open(file_path, "w") as file: json.dump(history_to_save, file, indent=4) if self.VERBOSE: self.console.print(f"[bold green]Chat history saved to {file_path}[/bold green]") def get_total_token(self): """ Get total token used """ if self.VERBOSE: self.console.print(f"[bold cyan]Total token used: {self.response.usage.total_tokens}[/bold cyan]") return self.response.usage.total_tokens def get_image_token(self): """ Get image token used """ if self.VERBOSE: self.console.print(f"[bold cyan]Image token used: {self.image_token_count}[/bold cyan]") return self.image_token_count def reset_tokens(self): """ Reset total and image token used """ self.response.usage.total_tokens = 0 self.image_token_count = 0 if self.VERBOSE: self.console.print(f"[bold cyan]Image token reset[/bold cyan]") from math import ceil def count_image_tokens(width: int, height: int): h = ceil(height / 512) w = ceil(width / 512) n = w * h total = 85 + 170 * n return total def printmd(string): display(Markdown(string)) def extract_quoted_words(string): quoted_words = re.findall(r'"([^"]*)"', string) return quoted_words def response_to_json(response): # Remove the markdown code block formatting response_strip = response.strip('```json\n').rstrip('```') # Convert the cleaned string to a JSON object try: response_json = json.loads(response_strip) except json.JSONDecodeError as e: response_json = None error_message = str(e) return response_json, error_message if response_json is None else "" def match_objects(response_object_names, original_object_names, type_conversion): matched_objects = [] for res_obj_name in response_object_names: components = res_obj_name.split('_') converted_components = set() # Applying type conversion and creating a unique set of components for comp in components: converted_comp = type_conversion.get(comp, comp) converted_components.add(converted_comp) # Check if the unique set of converted components is in any of the original object names for original in original_object_names: if all(converted_comp in original for converted_comp in converted_components): matched_objects.append(original) break else: print(f"No match found for {res_obj_name}") print(f"Type manually in the set of {original_object_names}:") matched_objects.append(input()) return matched_objects def parse_and_get_action(response_json, option_idx, original_objects, type_conversion): func_call_list = [] action = response_json["options"][option_idx-1]["action"] # Splitting actions correctly if there are multiple actions if isinstance(action, str): actions = [act.strip() + ')' for act in action.split('),') if act.strip()] elif isinstance(action, list): actions = action else: raise ValueError("Action must be a string or a list of strings") for act in actions: # Handle special cases; none-action / done-action if act in ["move_object(None, None)", "set_done()"]: func_call_list.append(f"{act}") continue # Regular action processing func_name, args = act.split('(', 1) args = args.rstrip(')') args_list = args.split(', ') new_args = [] for arg in args_list: arg_parts = arg.split('_') # Applying type conversion to each part of arg converted_arg_parts = [type_conversion.get(part, part) for part in arg_parts] matched_name = match_objects(["_".join(converted_arg_parts)], original_objects, type_conversion) if matched_name: arg = matched_name[0] new_args.append(f'"{arg}"') func_call = f"{func_name}({', '.join(new_args)})" func_call_list.append(func_call) return func_call_list def parse_actions_to_executable_strings(response_json, option_idx, env): actions = response_json["options"][option_idx - 1]["actions"] executable_strings = [] stored_results = {} for action in actions: function_name = action["function"] arguments = action["arguments"] # Preparing the arguments for the function call prepared_args = [] for arg in arguments: if arg == "None": # Handling the case where the argument is "None" prepared_args.append(None) elif arg in stored_results: # Use the variable name directly prepared_args.append(stored_results[arg]) else: # Format the argument as a string or use as is prepared_arg = f'"{arg}"' if isinstance(arg, str) else arg prepared_args.append(prepared_arg) # Format the executable string if "store_result_as" in action: result_var = action["store_result_as"] exec_str = f'{result_var} = env.{function_name}({", ".join(map(str, prepared_args))})' stored_results[result_var] = result_var # Store the variable name for later use else: exec_str = f'env.{function_name}({", ".join(map(str, prepared_args))})' executable_strings.append(exec_str) return executable_strings def extract_arguments(response_json): # Regular expression pattern to extract arguments from action pattern = r'move_object\(([^)]+)\)' # List to hold extracted arguments extracted_arguments = [] # Iterate over each option in response_json for option in response_json.get("options", []): action = option.get("action", "") match = re.search(pattern, action) if match: # Extract the content inside parentheses and split by comma arguments = match.group(1) args = [arg.strip() for arg in arguments.split(',')] extracted_arguments.append(args) return extracted_arguments def decode_image(base64_image_string): """ Decodes a Base64 encoded image string and returns it as a NumPy array. Parameters: base64_image_string (str): A Base64 encoded image string. Returns: numpy.ndarray: A NumPy array representing the image if successful, None otherwise. """ # Remove Data URI scheme if present if "," in base64_image_string: base64_image_string = base64_image_string.split(',')[1] try: image_data = base64.b64decode(base64_image_string) image = Image.open(BytesIO(image_data)) return np.array(image) except Exception as e: print(f"An error occurred: {e}") return None