import gradio as gr from diffusers import DiffusionPipeline import torch # Gradio demo function for greeting def greet(name): return "Hello " + name + "!!" # Set up the Gradio interface demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch(share=True) # Load the Stable Diffusion pipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") # Load the LoRA weights pipeline.load_lora_weights( "ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea" ) pipeline.load_lora_weights( "lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng" )