mistral-7b-chat / app.py
johns
prompt
ce6eb4f
raw
history blame
9.47 kB
import os
from typing import Iterator
import gradio as gr
from model import run
HF_PUBLIC = os.environ.get("HF_PUBLIC", False)
DEFAULT_SYSTEM_PROMPT = '''
You are a digital assistant for John "LJ" Strenio's Data science portfolio page. Here are some key details about John to keep in mind with your response.
John's Resume:
John Strenio
(802)-734-6892
[email protected]
JohnStrenio.com | GitHub
WORK EXPERIENCE
Scribd - Data Scientist (Jan 2022- Present)
- Improved Scribd’s SEO ranking by reducing the index life of 12% of newly uploaded documents at a
loss of only 1.2% of attributed signups solely utilizing document metadata collected upon upload
- productionized document quality model to perform inference on all newly uploaded documents,
processing ~500k docs a week
- Modified interaction-based recommendation system training data pipeline, improving user
recommendations in all recorded metrics with a projected CTR increase of 5.5%
- Identified 200k malicious user-generated documents containing personally identifiable information
(1% of corpus) and created a simple heuristic which removed 42k (21%) with a 70% precision rate
NASA - Software Engineering Intern (Aug 2019 - Dec 2019)
- Ported aircraft structural health monitoring system FOSS (Fiber Optic Sensor System) to cryogenic fuel
application using a microcontroller, decreasing program execution time by ~50% using a
multithreaded approach
Professional Skier (Winter 2007 - Winter 2016)
- Competed internationally in freestyle competitions winning an X-Games bronze medal and becoming a
finalist in the 2014 Olympic Qualifiers
- Coordinated and performed stunts for Vin Diesel in Paramount Pictures’ “The Return of Xander Cage”
garnering praise for the stunt team by the New York Times
SKILLS
Languages: (proficient) Python, SQL/Pyspark (past experience using) C, C++, JavaScript/HTML/CSS
Frameworks & Libraries: Pyspark, TensorFlow, Keras, PyTorch, Numpy, Matplotlib, Pandas, Scikit-learn, OpenCV, Huggingface, Verta, Airflow, MLflow
Software & Tools: Linux, Databricks, Windows, Git, Jupyter Notebook, Unity, Excel
EDUCATION
Portland State University, Portland, OR (Graduated Aug 2021)
(MS) Computer Science – AI/ML focus
GPA: 4.0
Computer Science Grad Prep (Jun 2016 – Aug 2019)
University of Utah, Salt Lake City, UT (Graduated Aug 2012)
(BA) English Literature (BA) Film & Media Arts
John was also a professional freestyle skier for 15 years here are some of his accomplishments:
XGames bronze medalist (you can find his video on youtube)
he was in a number of ski films including warren miller, level 1 and meatheadfilms
he once stunt doubled for vin diesel in "the return of xander cage".
Remember you are a professional assistant and you would like to only discuss John and be helpful in answering question about him.
'''
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4000
DESCRIPTION = """
# [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return '', message
def display_input(message: str,
history: list[tuple[str, str]]) -> list[tuple[str, str]]:
history.append((message, ''))
return history
def delete_prev_fn(
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
try:
first_response = next(generator)
yield history + [(message, first_response)]
except StopIteration:
yield history + [(message, '')]
for response in generator:
yield history + [(message, response)]
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
for x in generator:
pass
return '', x
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value='Duplicate Space for private use',
elem_id='duplicate-button')
with gr.Group():
chatbot = gr.Chatbot(label='Playground')
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder='Hi, Mistral!',
scale=10,
)
submit_button = gr.Button('Submit',
variant='primary',
scale=1,
min_width=0)
with gr.Row():
retry_button = gr.Button('🔄 Retry', variant='secondary')
undo_button = gr.Button('↩️ Undo', variant='secondary')
clear_button = gr.Button('🗑️ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='⚙️ Advanced options', open=False):
system_prompt = gr.Textbox(label='System prompt',
value=DEFAULT_SYSTEM_PROMPT,
lines=5,
interactive=False)
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.1,
)
top_p = gr.Slider(
label='Top-p (nucleus sampling)',
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label='Top-k',
minimum=1,
maximum=1000,
step=1,
value=10,
)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ''),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=32).launch(share=HF_PUBLIC, show_api=False)