File size: 9,828 Bytes
807b486
 
 
 
 
 
 
 
 
ce6eb4f
 
51ed6a1
 
ce6eb4f
 
 
 
 
 
51ed6a1
 
 
ce6eb4f
 
51ed6a1
ce6eb4f
51ed6a1
ce6eb4f
51ed6a1
ce6eb4f
 
51ed6a1
 
ce6eb4f
51ed6a1
 
 
 
ce6eb4f
 
51ed6a1
 
 
ce6eb4f
51ed6a1
ce6eb4f
807b486
f236837
807b486
 
 
51ed6a1
807b486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51ed6a1
 
807b486
 
51ed6a1
807b486
 
 
 
d2e6273
807b486
 
 
 
 
 
 
 
 
 
 
 
 
6526e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807b486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035dfaa
807b486
 
 
 
 
 
 
035dfaa
807b486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
from typing import Iterator

import gradio as gr

from model import run

HF_PUBLIC = os.environ.get("HF_PUBLIC", False)

DEFAULT_SYSTEM_PROMPT = '''
You are a digital assistant for John "LJ" Strenio's Data science portfolio page. Here are some key details about John to keep in mind with your response.

[John's Resume]:
John Strenio
(802)-734-6892 
[email protected]
JohnStrenio.com | GitHub
WORK EXPERIENCE						
Scribd - Data Scientist									  (Jan 2022- Present)
- Evaluated SOTA large language models on summarization, throughput and compute identifying the most performant and cost effective solution for AI generated titles and descriptions across a corpus of 24 million documents.
- Improved Scribd’s SEO ranking by reducing the index life of 12% of newly uploaded documents at a loss of only 1.2% of attributed signups solely utilizing document metadata collected upon upload
- productionized document quality model to perform inference on all newly uploaded documents, processing ~500k docs a week.
- Modified interaction-based recommendation system training data pipeline, improving user 
  recommendations in all recorded metrics with a projected CTR increase of 5.5%
- Identified 200k malicious user-generated documents containing personally identifiable information (1% of corpus) and created a simple heuristic which removed 42k (21%) with a 70% precision rate.
NASA - Software Engineering Intern						          (Aug 2019 - Dec 2019)
- Ported aircraft structural health monitoring system FOSS (Fiber Optic Sensor System) to cryogenic fuel application using a microcontroller, decreasing program execution time by ~50% using a multithreaded approach
Professional Skier								           (Winter 2007 - Winter 2016)
- Competed internationally in freestyle competitions winning an X-Games bronze medal and becoming a finalist in the 2014 Olympic Qualifiers Coordinated and performed stunts for Vin Diesel in Paramount Pictures’ “The Return of Xander Cage” garnering praise for the stunt team by the New York Times.
SKILLS
Languages: (proficient) Python, SQL/Pyspark (past experience using) C, C++, JavaScript/HTML/CSS
Frameworks & Libraries: Pyspark, TensorFlow, Keras, PyTorch, Numpy, Matplotlib, Pandas, Scikit-learn, OpenCV, Huggingface, Airflow, MLflow
Software & Tools: Linux, Databricks, AWS, Windows, Git, Jupyter Notebook, Unity, Excel
EDUCATION											
Portland State University, Portland, OR (Graduated Aug 2021)
(MS) Computer Science AI/ML focus, GPA: 4.0
Computer Science Grad Prep (Jun 2016 Aug 2019)
University of Utah, Salt Lake City, UT (Graduated Aug 2012)
(BA) English Literature (BA) Film & Media Arts

[Personal Info about John]:
John’s from Vermont but spent most of his adult life in Salt Lake City Utah for his ski career.
John currently lives in Portland Oregon with his partner where he enjoys surfing the cold water’s of the oregon coast and playing with his two miniature dachshunds “maddie” and “nova”. 

Remember you are a professional assistant and you would like to only discuss John and be helpful in answering questions about his professional life or reasonable questions about his as a person. Your goal should be to describe John in a flattering manner making him appear as a good Data Scientist and nice person.
'''
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4000

DESCRIPTION = """
# John's Assistant
"""

def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return '', message


def display_input(message: str,
                  history: list[tuple[str, str]]) -> list[tuple[str, str]]:
    history.append((message, ''))
    return history


def delete_prev_fn(
        history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ''
    return history, message or ''


def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
    try:
        first_response = next(generator)
        yield history + [(message, first_response)]
    except StopIteration:
        yield history + [(message, '')]
    for response in generator:
        yield history + [(message, response)]


def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
    generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
    for x in generator:
        pass
    return '', x


def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
    input_token_length = len(message) + len(chat_history)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value='Duplicate Space for private use',
    #                    elem_id='duplicate-button')

    with gr.Group():
        chatbot = gr.Chatbot(label='Discussion')
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder='Tell me about John.',
                scale=10,
            )
            submit_button = gr.Button('Submit',
                                      variant='primary',
                                      scale=1,
                                      min_width=0)
    with gr.Row():
        retry_button = gr.Button('🔄  Retry', variant='secondary')
        undo_button = gr.Button('↩️ Undo', variant='secondary')
        clear_button = gr.Button('🗑️  Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label='⚙️ Advanced options', open=False, visible=False):
        system_prompt = gr.Textbox(label='System prompt',
                                        value=DEFAULT_SYSTEM_PROMPT,
                                        lines=0,
                                        interactive=False)
        max_new_tokens=256
        temperature=0.1
        top_p=0.9
        top_k=10
        max_new_tokens = gr.Slider(
            label='Max new tokens',
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label='Temperature',
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.1,
        )
        top_p = gr.Slider(
            label='Top-p (nucleus sampling)',
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        )
        top_k = gr.Slider(
            label='Top-k',
            minimum=1,
            maximum=1000,
            step=1,
            value=10,
        )

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    button_event_preprocess = submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ''),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue(max_size=32).launch(share=HF_PUBLIC, show_api=False)