joehare commited on
Commit
5afef2f
·
1 Parent(s): 359508c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -6
app.py CHANGED
@@ -6,14 +6,20 @@ from sentence_transformers import SentenceTransformer, util
6
  model = SentenceTransformer('all-MiniLM-L6-v2')
7
 
8
  # Two lists of sentences
9
- sentences1 = ['The cat sits outside',
10
- 'A man is playing guitar',
11
- 'The new movie is awesome']
 
12
 
13
  sentences2 = ['The dog plays in the garden',
14
  'A woman watches TV',
15
  'The new movie is so great']
16
 
 
 
 
 
 
17
  #Compute embedding for both lists
18
  embeddings1 = model.encode(sentences1, convert_to_tensor=True)
19
  embeddings2 = model.encode(sentences2, convert_to_tensor=True)
@@ -21,10 +27,12 @@ embeddings2 = model.encode(sentences2, convert_to_tensor=True)
21
  #Compute cosine-similarities
22
  cosine_scores = util.cos_sim(embeddings1, embeddings2)
23
 
 
 
24
  (col1, col2, score_col)= st.columns(3)
25
- col1.header("first sentence")
26
- col2.header("second sentence")
27
- score_col.header("score")
28
  #Output the pairs with their score
29
  for i in range(len(sentences1)):
30
  #st.text("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
 
6
  model = SentenceTransformer('all-MiniLM-L6-v2')
7
 
8
  # Two lists of sentences
9
+ sentences1 = ['A man is playing guitar',
10
+ 'The cat sits outside',
11
+ 'The new movie is awesome',
12
+ 'I do not have a match']
13
 
14
  sentences2 = ['The dog plays in the garden',
15
  'A woman watches TV',
16
  'The new movie is so great']
17
 
18
+ st.text("When you have two arrays of sentences, you can compare them. Inspect these two unlabeled arrays")
19
+
20
+ st.text(sentences1)
21
+ st.text(sentences2)
22
+
23
  #Compute embedding for both lists
24
  embeddings1 = model.encode(sentences1, convert_to_tensor=True)
25
  embeddings2 = model.encode(sentences2, convert_to_tensor=True)
 
27
  #Compute cosine-similarities
28
  cosine_scores = util.cos_sim(embeddings1, embeddings2)
29
 
30
+ st.text("Computing which pairs are most similar")
31
+
32
  (col1, col2, score_col)= st.columns(3)
33
+ col1.header("Left Token")
34
+ col2.header("Right Token")
35
+ score_col.header("Score")
36
  #Output the pairs with their score
37
  for i in range(len(sentences1)):
38
  #st.text("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))