File size: 40,239 Bytes
6e396aa 932aa21 6e396aa 5833014 35d73c6 6e396aa 35d73c6 6e396aa 35d73c6 6e396aa 2d68b6e 6e396aa 2d68b6e 6e396aa 932aa21 6e396aa 9087fc5 932aa21 9087fc5 72f76a3 9087fc5 6e396aa 9087fc5 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 ddebce6 932aa21 63283ba 9087fc5 6e396aa 932aa21 6e396aa 63283ba 6e396aa 35d73c6 6e396aa 2d68b6e 6e396aa f499507 6e396aa 2d68b6e 6e396aa 35d73c6 6e396aa 2d68b6e 6e396aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
import streamlit as st
import numpy as np
import pandas as pd
import joblib
import torch
from transformers import AutoTokenizer, AutoModel
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import precision_recall_curve, roc_curve, confusion_matrix, classification_report
import matplotlib.pyplot as plt
import shap
import plotly.express as px
import streamlit as st
import pandas as pd
import datetime
import json
import requests
from streamlit_lottie import st_lottie
import streamlit.components.v1 as components
from streamlit_navigation_bar import st_navbar
from transformers import AutoTokenizer, AutoModel
import re
from tqdm import tqdm
import torch
import os
from hugchat.login import Login
from hugchat import hugchat
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch.nn as nn
import time
# Defining wide mode
st.set_page_config(layout="wide")
dark_theme = """
<style>
body, .stApp {
background-color: #0e1117;
color: white;
}
.stTextInput, .stButton>button {
background-color: #222;
color: white;
}
.stMarkdown, .stTextArea, .stSelectbox, .stCheckbox {
color: white;
}
</style>
"""
st.markdown(dark_theme, unsafe_allow_html=True)
# Criar o menu na barra lateral
st.sidebar.title("๐ Menu")
page = st.sidebar.radio(
"Selecione uma opรงรฃo:",
["๐ Home", "๐ Tabular Data", "๐ Clinical Text Notes", "๐ Ensemble Prediction"]
)
if page=="๐ Home":
st.markdown("""
<style>
.title {
text-align: center;
font-size: 36px;
font-weight: bold;
color: #2C3E50;
}
.subtitle {
text-align: center;
font-size: 22px;
color: #7F8C8D;
}
.box {
background-color: #ECF0F1;
padding: 15px;
border-radius: 10px;
text-align: center;
margin-bottom: 10px;
font-size: 18px;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown("<h1 class='title'>๐ AI Clinical Readmission Predictor</h1>", unsafe_allow_html=True)
st.markdown("<h2 class='subtitle'>Using Machine Learning for Better Patient Outcomes</h2>", unsafe_allow_html=True)
image_1 ='https://content.presspage.com/uploads/2110/4970f578-5f20-4675-acc2-3b2cda25fa96/1920_ai-machine-learning-cedars-sinai.jpg?10000'
image_2 = 'https://med-tech.world/app/uploads/2024/10/AI-Hospitals.jpg.webp'
st.image(image_2, width=1450) # Hospital Icon
st.write("This app helps predict patient readmission risk using machine learning models. "
"Upload data, analyze clinical notes, and see predictions from our ensemble model.")
# Navigation Buttons
st.markdown("---")
st.markdown("<h3 style='text-align: center;'>๐ Explore the App</h3>", unsafe_allow_html=True)
elif page== "๐ Tabular Data":
# Function to load Lottie animation
def load_lottie(url):
response = requests.get(url)
if response.status_code != 200:
return None
return response.json()
# Load Lottie Animation
lottie_hello = load_lottie("https://assets7.lottiefiles.com/packages/lf20_jcikwtux.json")
if lottie_hello:
st_lottie(lottie_hello, speed=1, loop=True, height=200)
# Load dataset
df = pd.read_csv('/home/user/app/ensemble_test.csv')
# Streamlit App Header
st.title('๐ฅ Hospital Readmission Prediction')
st.markdown("""
<h3 style='text-align: center; color: gray;'>Predict ICU hospital readmission using Artificial Intelligence</h3>
""", unsafe_allow_html=True)
st.markdown("---")
# Helper Functions
def get_age_group(age):
"""Classify age into predefined groups with correct column names."""
if 36 <= age <= 50:
return "age_group_36-50 (Middle-Aged Adults)"
elif 51 <= age <= 65:
return "age_group_51-65 (Older Middle-Aged Adults)"
elif 66 <= age <= 80:
return "age_group_66-80 (Senior Adults)"
elif age >= 81:
return "age_group_81+ (Elderly)"
return "age_group_Below_36"
def get_period(hour):
"""Determine admission/discharge period."""
return "Morning" if 6 <= hour < 18 else "Night"
# **User Inputs**
st.subheader("๐ Select the admission's Characteristics")
admission_type = st.selectbox("๐ Type of Admission", df.columns[df.columns.str.startswith('admission_type_')])
admission_location = st.selectbox("๐ Admission Location", df.columns[df.columns.str.startswith('admission_location_')])
discharge_location = st.selectbox("๐ฅ Discharge Location", df.columns[df.columns.str.startswith('discharge_location_')])
insurance = st.selectbox("๐ฐ Insurance Type", df.columns[df.columns.str.startswith('insurance_')])
st.sidebar.subheader("๐ Patient Information")
language = st.sidebar.selectbox("๐ฃ Language", df.columns[df.columns.str.startswith('language_')])
marital_status = st.sidebar.selectbox("๐ Marital Status", df.columns[df.columns.str.startswith('marital_status_')])
race = st.sidebar.selectbox("๐ง Race", df.columns[df.columns.str.startswith('race_')])
sex = st.sidebar.selectbox("โง Sex", ['gender_M', 'gender_F'])
age = st.sidebar.slider("๐
Age", 18, 100, 50)
admission_time = st.time_input("โณ Admission Time", value=datetime.time(12, 0))
discharge_time = st.time_input("โณ Discharge Time", value=datetime.time(12, 0))
# Laboratory & Clinical Values
st.subheader("๐ Clinical Values")
numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity', 'drg_mortality', 'time_since_last_stay',
'blood_cells', 'hemoglobin', 'glucose', 'creatine', 'plaquete']
numeric_inputs = {}
cols = st.columns(len(numerical_features))
# General Numerical Values
st.subheader("๐ General Hosptal Information")
general_numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity',
'drg_mortality', 'time_since_last_stay']
general_inputs = {}
cols = st.columns(3) # Three columns for general values
for i, feature in enumerate(general_numerical_features):
col_index = i % 3 # Distribute across columns
min_val, max_val = df[feature].min(), df[feature].max()
with cols[col_index]:
general_inputs[feature] = st.slider(
f"๐ {feature.replace('_', ' ').title()}",
float(min_val),
float(max_val),
float((min_val + max_val) / 2)
)
# Laboratory Values
st.subheader("๐งช Laboratory Test Results")
lab_numerical_features = ['blood_cells', 'hemoglobin', 'glucose',
'creatine', 'plaquete']
lab_inputs = {}
lab_cols = st.columns(3) # Three columns for lab values
for i, feature in enumerate(lab_numerical_features):
col_index = i % 3 # Distribute across columns
min_val, max_val = df[feature].min(), df[feature].max()
with lab_cols[col_index]:
lab_inputs[feature] = st.slider(
f"๐ฉธ {feature.replace('_', ' ').title()}",
float(min_val),
float(max_val),
float((min_val + max_val) / 2)
)
min_val, max_val = df["cci_score"].min(), df["cci_score"].max()
lab_inputs["cci_score"] = st.sidebar.slider(
f"๐ CCI Score",
float(min_val),
float(max_val),
float((min_val + max_val) / 2)
)
# Process Inputs into Features
feature_vector = {col: 0 for col in df.columns}
feature_vector.update({
admission_type: 1,
admission_location: 1,
discharge_location: 1,
insurance: 1,
language: 1,
marital_status: 1,
race: 1,
"gender_M": 1 if sex == "gender_M" else 0,
f"admit_period_{get_period(admission_time.hour)}": 1,
f"discharge_period_{get_period(discharge_time.hour)}": 1
})
age_group = get_age_group(age) # This function now returns correct dataset column names
# Use the exact column names from the dataset
for group in [
"age_group_36-50 (Middle-Aged Adults)",
"age_group_51-65 (Older Middle-Aged Adults)",
"age_group_66-80 (Senior Adults)",
"age_group_81+ (Elderly)"
]:
feature_vector[group] = 1 if group == age_group else 0 # Set selected group to 1, others to 0
feature_vector.update(numeric_inputs)
# Display Processed Data
st.markdown("---")
# Load XGBoost model
tabular_model_path = "/home/user/app/final_xgboost_model.pkl"
tabular_model = joblib.load(tabular_model_path)
print("โ
XGBoost Tabular Model loaded successfully!")
# Load dataset columns (use the same order as training)
expected_columns = [
col for col in df.columns if col not in ["Unnamed: 0", "subject_id", "hadm_id", "probs"]
]
# Define correct dataset column names for age groups
age_group_mapping = {
"age_group_36-50": "age_group_36-50 (Middle-Aged Adults)",
"age_group_51-65": "age_group_51-65 (Older Middle-Aged Adults)",
"age_group_66-80": "age_group_66-80 (Senior Adults)",
"age_group_81+": "age_group_81+ (Elderly)",
}
# Process Inputs into Features
feature_vector = {col: 0 for col in df.columns}
# Set selected categorical features to 1
feature_vector.update({
admission_type: 1,
admission_location: 1,
discharge_location: 1,
insurance: 1,
language: 1,
marital_status: 1,
race: 1,
"gender_M": 1 if sex == "gender_M" else 0,
f"admit_period_{get_period(admission_time.hour)}": 1,
f"discharge_period_{get_period(discharge_time.hour)}": 1
})
# Set correct age group
age_group = get_age_group(age)
for group in [
"age_group_36-50 (Middle-Aged Adults)",
"age_group_51-65 (Older Middle-Aged Adults)",
"age_group_66-80 (Senior Adults)",
"age_group_81+ (Elderly)"
]:
feature_vector[group] = 1 if group == age_group else 0
# Update with numerical inputs
feature_vector.update(general_inputs)
feature_vector.update(lab_inputs)
# Ensure feature order matches expected model input
fixed_feature_vector = {age_group_mapping.get(k, k): v for k, v in feature_vector.items()}
feature_df = pd.DataFrame([fixed_feature_vector]).reindex(columns=expected_columns, fill_value=0)
#st.write(feature_df)
# Predict probability of readmission
prediction_proba = tabular_model.predict_proba(feature_df)[:, 1]
probability = float(prediction_proba[0]) # Convert NumPy array to scalar
st.session_state["XGBoost probability"] = probability
prediction = (prediction_proba >= 0.5).astype(int)
import shap
import matplotlib.pyplot as plt
import streamlit.components.v1 as components # Required for displaying SHAP force plot
st.write(f"Raw Prediction Probability: {probability:.4f}")
# Prediction Button
if st.button("๐ Predict Readmission"):
with st.spinner("๐ Processing Prediction..."):
st.subheader("๐ฏ Prediction Results")
col1, col2 = st.columns(2)
with col1:
st.metric(label="๐งฎ Readmission Probability", value=f"{probability:.2%}")
with col2:
if prediction == 1:
st.error("โ ๏ธ High Risk of Readmission")
else:
st.success("โ
Low Risk of Readmission")
# Feature Importance Button
if st.button("๐ Feature Importance for Prediction"):
st.metric(label="๐งฎ Readmission Probability", value=f"{probability:.2%}")
# โ
Initialize SHAP Explainer for XGBoost
explainer = shap.TreeExplainer(tabular_model)
shap_values = explainer.shap_values(feature_df) # SHAP values for all samples
# โ
Convert SHAP values into a DataFrame (Sorting First)
shap_df = pd.DataFrame({
"Feature": feature_df.columns,
"SHAP Value": shap_values[0] # SHAP values for the first instance
})
# โ
Select **Top 10 Most Important Features** (Sorted by Absolute SHAP Value)
shap_df["abs_SHAP"] = shap_df["SHAP Value"].abs() # Add column with absolute values
shap_df = shap_df.sort_values(by="abs_SHAP", ascending=False).head(10) # Top 10
# Get top features and their SHAP impact values (shap_df assumed to be available)
top_features = sorted(zip(shap_df['Feature'], shap_df['SHAP Value']), key=lambda x: abs(x[1]), reverse=True)
# Create a formatted string for `top_factors` to be shown in the UI
top_factors = "\n".join([f"- {feat}: {round(value, 2)} impact" for feat, value in top_features])
import time
import random
from textwrap import dedent
# Tรญtulo estilizado
st.markdown("""
<h1 style='text-align: center; color: #2c3e50;'>๐ฉบ AI-Powered Patient Readmission Analysis</h1>
<hr style='border: 2px solid #3498db;'>
""", unsafe_allow_html=True)
# Funรงรฃo para animar uma aranha
placeholder = st.empty()
for i in range(40): # 4 segundos (40 iteraรงรตes de 0.1s)
time.sleep(0.1)
placeholder.empty()
with st.spinner("๐ค Analyzing..."):
time.sleep(2) # Simular carregamento
try:
ai_output = """
# ๐ฉบ AI-Powered Patient Readmission Analysis
## ๐ค Understanding the Model's Prediction
The feature impacts indicate how much each factor contributes to the model's decision to predict patient readmission. The magnitude and direction of the impact determine its importance.
---
## ๐ Key Characteristics Influencing the Prediction:
- **Previous Stays** (1.56 impact): This feature has the highest positive impact, suggesting that patients with a history of previous hospital stays are more likely to be readmitted. The large impact indicates that the model places significant weight on this factor, likely because repeated hospital visits can signify chronic conditions or complications that are not fully resolved.
- **Number of Medications (n_meds)** (0.17 impact): Patients taking a higher number of medications are at a higher risk of readmission. This could be due to the complexity of their medical conditions, potential side effects, or interactions between medications that may lead to further health issues.
- **Time Since Last Stay** (0.16 impact): The time elapsed since the patient's last hospital stay also positively influences the prediction of readmission. This might indicate that patients who have been discharged recently are at a higher risk of returning, possibly due to incomplete recovery or the nature of their condition requiring ongoing care.
- **Real Age** (0.14 impact): The patient's age is another factor that increases the likelihood of readmission. Older patients may have more complex health issues, diminished physiological reserve, and a higher likelihood of comorbid conditions, all of which can contribute to the need for repeat hospitalizations.
- **Length of Stay (los_days)** (0.07 impact): Although less influential than the top factors, a longer hospital stay during the current or previous admission(s) slightly increases the risk of readmission. This could be indicative of more severe illness, complications, or the need for prolonged recovery periods.
---
## ๐ Less Influential but Still Relevant Factors:
- **CCI Score** (0.05 impact): The Charlson Comorbidity Index (CCI) score predicts the ten-year mortality for a patient with comorbid conditions such as heart disease, diabetes, or cancer. A higher score indicates a higher risk of mortality and, by extension, potentially a higher risk of readmission due to the complexity of the patient's health conditions.
- **DRG Severity** (-0.04 impact): The Diagnosis-Related Group (DRG) severity categorizes hospital cases based on expected resource use. Its negative impact suggests that higher severity cases might actually have a slightly lower risk of readmission, possibly due to more intensive treatment and monitoring during their initial stay.
- **Race** (race_WHITE: -0.04 impact, race_UNKNOWN: 0.03 impact): The impacts of race are relatively small and might reflect underlying socio-economic or healthcare access disparities rather than direct biological factors. However, interpreting these impacts requires caution due to the potential for confounding variables and the ethical considerations surrounding race in healthcare outcomes.
- **Blood Cells** (0.03 impact): This factor, likely referring to some measure of blood cell count or health, has a minor positive impact, suggesting that abnormalities in blood cell counts could slightly increase the risk of readmission, potentially due to underlying conditions affecting the blood or bone marrow.
---
## โ
Conclusion:
The model's prediction of patient readmission is most strongly influenced by the patient's history of previous hospital stays, indicating a potential for chronic or recurring health issues. The number of medications, time since the last stay, and the patient's age are also significant factors, highlighting the complexity of the patient's health condition and the potential for ongoing care needs.
While other factors such as CCI score, DRG severity, race, and blood cell health play a role, their impacts are less pronounced. Understanding these factors can help healthcare providers identify high-risk patients and implement targeted interventions to reduce the likelihood of readmission.
"""
# ๐ญ **Show AI Response in a Stylish Chat Format**
with st.chat_message("assistant"):
st.markdown(f"**๐ก AI Explanation:**\n\n")
st.markdown(dedent(ai_output))
except Exception as e:
st.error(f"โ ๏ธ Error retrieving response: {e}")
st.stop()
# Show Top 10 Features
#st.write(shap_df[["Feature", "SHAP Value"]]) # Display only relevant columns
# โ
SHAP Bar Plot (Corrected for Top 10 Selection)
fig, ax = plt.subplots(figsize=(8, 6))
shap.bar_plot(shap_df["SHAP Value"].values, shap_df["Feature"].values) # Correct Top 10
st.pyplot(fig)
# ๐ฏ SHAP Force Plot (How Features Affected the Prediction)
st.subheader("๐ฏ SHAP Force Plot (How Features Affected the Prediction)")
# โ
Fix: Use explainer.expected_value (single scalar)
force_plot = shap.force_plot(
explainer.expected_value, shap_values[0], feature_df.iloc[0], matplotlib=False
)
# โ
Convert SHAP force plot to HTML
shap_html = f"<head>{shap.getjs()}</head><body>{force_plot.html()}</body>"
# โ
Render SHAP force plot in Streamlit
components.html(shap_html, height=400)
elif page == "๐ Clinical Text Notes":
# Set Streamlit Page Title
st.subheader("๐ Clinical Text Note")
# Utility Functions
def clean_text(text):
"""Cleans input text by removing non-ASCII characters, extra spaces, and unwanted symbols."""
text = re.sub(r"[^\x20-\x7E]", " ", text)
text = re.sub(r"_{2,}", "", text)
text = re.sub(r"\s+", " ", text)
text = re.sub(r"[^\w\s.,:;*%()\[\]-]", "", text)
return text.lower().strip()
import re
def extract_fields(text):
"""Extracts key fields from clinical notes using regex patterns."""
patterns = {
"Discharge Medications": r"Discharge Medications[:\-]?\s*(.+?)\s+(?:Discharge Disposition|Discharge Condition|Discharge Instructions|Followup Instructions|$)",
"Discharge Diagnosis": r"Discharge Diagnosis[:\-]?\s*(.+?)\s+(?:Discharge Condition|Discharge Medications|Discharge Instructions|Followup Instructions|$)",
"Discharge Instructions": r"Discharge Instructions[:\-]?\s*(.*?)\s+(?:Followup Instructions|Discharge Disposition|Discharge Condition|$)",
"History of Present Illness": r"History of Present Illness[:\-]?\s*(.+?)\s+(?:Past Medical History|Social History|Family History|Physical Exam|$)",
"Past Medical History": r"Past Medical History[:\-]?\s*(.+?)\s+(?:Social History|Family History|Physical Exam|$)"
}
extracted_data = {}
for field, pattern in patterns.items():
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if match:
extracted_data[field] = match.group(1).strip()
return extracted_data
def extract_features(texts, model, tokenizer, device, batch_size=8):
"""Extracts CLS token embeddings from the Clinical-Longformer model."""
all_features = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
inputs = tokenizer(batch_texts, return_tensors="pt", truncation=True, padding=True, max_length=4096).to(device)
global_attention_mask = torch.zeros_like(inputs["input_ids"]).to(device)
global_attention_mask[:, 0] = 1 # Set global attention for CLS token
with torch.no_grad():
outputs = model(**inputs, global_attention_mask=global_attention_mask)
all_features.append(outputs.last_hidden_state[:, 0, :])
return torch.cat(all_features, dim=0)
def extract_entities(text, pipe, entity_group):
"""Extracts specific entities from the clinical note using a NER pipeline."""
entities = pipe(text)
return [ent['word'] for ent in entities if ent['entity_group'] == entity_group] or ["No relevant entities found"]
# Load Model and Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@st.cache_resource()
def load_models():
"""Loads transformer models for text processing and NER."""
longformer_tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer")
longformer_model = AutoModel.from_pretrained("yikuan8/Clinical-Longformer").to(device).eval()
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
return longformer_tokenizer, longformer_model, ner_pipe
longformer_tokenizer, longformer_model, ner_pipe = load_models()
# Text Input
clinical_note = st.text_area("โ๏ธ Enter Clinical Note", placeholder="Write the clinical note here...")
if clinical_note:
cleaned_note = clean_text(clinical_note)
#st.write("### ๐ Cleaned Clinical Note:")
#st.write(cleaned_note)
# Extract Fields
extracted_data = extract_fields(cleaned_note)
st.write("### Extracted Fields")
st.write(extracted_data)
# Extract Embeddings
with st.spinner("๐ Extracting embeddings..."):
embeddings = extract_features([cleaned_note], longformer_model, longformer_tokenizer, device)
#st.write("### Extracted Embeddings")
#st.write(embeddings)
# Definir a classe RobustMLPClassifier
class RobustMLPClassifier(nn.Module):
def __init__(self, input_dim, hidden_dims=[256, 128, 64], dropout=0.3, activation=nn.ReLU()):
super(RobustMLPClassifier, self).__init__()
layers = []
current_dim = input_dim
for h in hidden_dims:
layers.append(nn.Linear(current_dim, h))
layers.append(nn.BatchNorm1d(h))
layers.append(activation)
layers.append(nn.Dropout(dropout))
current_dim = h
layers.append(nn.Linear(current_dim, 1))
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
# --- Load MLP Model and PCA ---
mlp_model_path = "/home/user/app/best_mlp_model_full.pth"
pca_path = "/home/user/app/best_pca_model.pkl"
best_mlp_model = torch.load(mlp_model_path, weights_only=False)
best_mlp_model.to(device)
best_mlp_model.eval()
pca = joblib.load(pca_path)
def predict_readmission(texts):
"""Predicts hospital readmission probability using Clinical-Longformer embeddings and MLP."""
embeddings = extract_features(texts, longformer_model, longformer_tokenizer, device)
embeddings_pca = pca.transform(embeddings.cpu().numpy()) # Apply PCA
inputs = torch.FloatTensor(embeddings_pca).to(device)
with torch.no_grad():
logits = best_mlp_model(inputs)
probabilities = torch.sigmoid(logits).cpu().numpy()
return probabilities
# Extract Medical Entities
with st.spinner("๐ Identifying medical entities..."):
extracted_data["Extracted Medications"] = extract_entities(
extracted_data.get("Discharge Medications", ""), ner_pipe, "Medication"
)
extracted_data["Extracted Diseases"] = extract_entities(
extracted_data.get("Discharge Diagnosis", ""), ner_pipe, "Disease_disorder"
)
extracted_data["Extracted Diseases (Past Medical History)"] = extract_entities(
extracted_data.get("Past Medical History", ""), ner_pipe, "Disease_disorder"
)
extracted_data["Extracted Diseases (History of Present Illness)"] = extract_entities(
extracted_data.get("History of Present Illness", ""), ner_pipe, "Disease_disorder"
)
# Extraรงรฃo de sintomas agora inclui "History of Present Illness"
extracted_data["Extracted Symptoms"] = extract_entities(
extracted_data.get("Review of Systems", "") + " " + extracted_data.get("History of Present Illness", ""),
ner_pipe, "Sign_symptom"
)
def clean_entities(entities):
"""Reconstruct fragmented tokens and remove duplicates."""
cleaned = []
temp = ""
for entity in entities:
if entity.startswith("##"): # Fragmented token
temp += entity.replace("##", "")
else:
if temp:
cleaned.append(temp) # Add the reconstructed token
temp = entity
if temp:
cleaned.append(temp) # Add the last processed token
# Filter out irrelevant short words and special characters
cleaned = [word for word in cleaned if len(word) > 2 and not re.match(r"^[\W_]+$", word)]
return sorted(set(cleaned)) # Remove duplicates and sort
# Clean extracted diseases and symptoms
diseases_cleaned = clean_entities(
extracted_data.get("Extracted Diseases", []) +
extracted_data.get("Extracted Diseases (Past Medical History)", []) +
extracted_data.get("Extracted Diseases (History of Present Illness)", [])
)
# Clean and reconstruct medication names
medications_cleaned = clean_entities(extracted_data.get("Extracted Medications", []))
# Store cleaned data in the main dictionary
extracted_data["Extracted Medications Cleaned"] = medications_cleaned
symptoms_cleaned = clean_entities(extracted_data.get("Extracted Symptoms", []))
# Display extracted entities
def display_list(title, items, icon="๐"):
"""Display extracted medical entities in an expandable list."""
with st.expander(f"**{title} ({len(items)})**"):
if items:
for item in items:
st.markdown(f"- {icon} **{item}**")
else:
st.markdown("_No information available._")
# Layout Header
st.markdown("## ๐ฅ **Patient Medical Analysis**")
st.markdown("---")
# Creating columns for metrics
col1, col2, col3 = st.columns(3)
# Medications Metrics
num_medications = len(medications_cleaned )
col1.metric(label="๐ Total Medications", value=num_medications)
# Diseases Metrics
num_diseases = len(diseases_cleaned)
col2.metric(label="๐ฆ Total Diseases", value=num_diseases)
# Symptoms Metrics
num_symptoms = len(symptoms_cleaned)
col3.metric(label="๐ค Total Symptoms", value=num_symptoms)
st.markdown("---")
# Organizing lists in two columns
col1, col2 = st.columns(2)
# Display Medications List
with col1:
st.markdown("### ๐ **Medications**")
display_list("Medication List", medications_cleaned , icon="๐")
# Display Diseases List
with col2:
st.markdown("### ๐ฆ **Diseases**")
display_list("Disease List", diseases_cleaned, icon="๐ฆ ")
# Symptoms Section
st.markdown("### ๐ค **Symptoms**")
display_list("Symptoms List", symptoms_cleaned, icon="๐ค")
st.markdown("---")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer")
# Functions for token count and truncation
def count_tokens(text):
tokens = tokenizer.tokenize(text)
return len(tokens)
def trunced_text(nr):
return 1 if nr > 4096 else 0
# Dictionary of diseases with synonyms (matching capitalization in the image)
disease_synonyms = {
"Pneumonia": ["pneumonia", "pneumonitis"],
"Diabetes": ["diabetes", "diabetes mellitus", "dm"],
"CHF": ["CHF", "congestive heart failure", "heart failure"],
"Septicemia": ["septicemia", "sepsis", "blood infection"],
"Cirrhosis": ["cirrhosis", "liver cirrhosis", "hepatic cirrhosis"],
"COPD": ["COPD", "chronic obstructive pulmonary disease"],
"Renal_Failure": ["renal failure", "kidney failure", "chronic kidney disease", "CKD"]
}
# Extract relevant fields (assuming extract_fields is defined elsewhere)
extracted_data = extract_fields(clinical_note)
# Compute token counts
number_of_tokens = count_tokens(clinical_note)
number_of_tokens_med = count_tokens(extracted_data.get("Discharge Medications", ""))
number_of_tokens_dis = count_tokens(extracted_data.get("Discharge Diagnosis", ""))
trunced = trunced_text(number_of_tokens)
# Convert diagnosis text to lowercase for case-insensitive matching
full_diagnosis_text = extracted_data.get("Discharge Diagnosis", "").lower()
# Function to check for any synonym in the diagnosis text
def check_disease_presence(disease_list, text):
return int(any(re.search(rf"\b{synonym}\b", text, re.IGNORECASE) for synonym in disease_list))
# Create binary columns for each disease based on synonyms
disease_flags = {disease: check_disease_presence(synonyms, full_diagnosis_text)
for disease, synonyms in disease_synonyms.items()}
# Count total diseases found
disease_flags["total_conditions"] = sum(disease_flags.values())
# Create DataFrame with a single row (matching column names from the image)
df = pd.DataFrame([{
'number_of_tokens_dis': number_of_tokens_dis,
'number_of_tokens': number_of_tokens,
'number_of_tokens_med': number_of_tokens_med,
'diagnostic_count': num_diseases, # Ensuring column name matches
'total_conditions': disease_flags["total_conditions"], # Matching name
'trunced': trunced,
**{disease: disease_flags[disease] for disease in disease_synonyms.keys()} # Disease presence flags
}])
# Display DataFrame
#st.write(df)
#load lighGBoost model
light_path = '/home/user/app/best_lgbm_model.pkl'
light_model = joblib.load(light_path)
#st.write("LightGBoost Model loaded sucessfully!")
# Ensure df is already created from previous steps
# Select only the columns that match the model input
model_features = light_model.feature_name_
# Check if all required features are in df
missing_features = [feat for feat in model_features if feat not in df.columns]
if missing_features:
st.write(f"โ ๏ธ Warning: Missing features in df: {missing_features}")
# Fill missing columns with 0 (if needed, assuming binary features)
for feat in missing_features:
df[feat] = 0 # Default to 0 for missing binary disease indicators
# Reorder df to match model features exactly
df = df[model_features]
# Convert df to NumPy array for LightGBM prediction
X = df.to_numpy()
# Make prediction
# Get probability of readmission
light_probability = light_model.predict_proba(X)[:, 1] # Get probability for class 1 (readmission)
# Armazenar no session_state
st.session_state["lightgbm probability"] = light_probability
# Output results
#st.write(f"๐น Readmission Prediction: {probability}")
# Prediction Button
if st.button("๐ Predict Readmission"):
with st.spinner("๐ Extracting embeddings and predicting readmission..."):
readmission_prob = predict_readmission([cleaned_note])[0][0] # Compute only once
st.session_state["MLP probability"] = readmission_prob
prediction = 1 if readmission_prob > 0.5 else 0 # Define prediction value
# Display Results
st.subheader("๐ฏ Prediction Results")
col1, col2 = st.columns(2)
with col1:
st.metric(label="๐งฎ Readmission Probability", value=f"{readmission_prob:.2%}")
with col2:
if prediction == 1:
st.error("โ ๏ธ High Risk of Readmission")
else:
st.success("โ
Low Risk of Readmission")
# Display Readmission Probability with Centered Styling
st.markdown(f"""
<div style="text-align:center; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
<h3>๐ Readmission Probability</h3>
<h2 style="color: {'red' if readmission_prob > 0.5 else 'green'};">{readmission_prob:.2%}</h2>
</div>
""", unsafe_allow_html=True)
elif page == "๐ Ensemble Prediction":
# Load the ensemble model
ensemble_model = joblib.load("/home/user/app/best_ensemble_model.pkl")
#st.write("โ
Ensemble Model loaded successfully!")
# Define models
models = ["XGBoost", "lightgbm", "MLP"]
# Retrieve stored probabilities from session state and ensure they are numeric
probabilities = []
for model in models:
key = f"{model} probability"
if key in st.session_state:
try:
prob = float(st.session_state[key])
probabilities.append(prob)
except ValueError:
st.error(f"โ ๏ธ Invalid probability value for {model}: {st.session_state[key]}")
probabilities.append(None)
else:
probabilities.append(None)
# Ensure all probabilities are valid before proceeding
if None not in probabilities:
st.write("### ๐ณ๏ธ Voting Process in Progress...")
progress_bar = st.progress(0) # Progress bar
voting_display = st.empty() # Placeholder for voting animation
votes = []
for i, (model, prob) in enumerate(zip(models, probabilities)):
time.sleep(1) # Simulate suspense
# Simulated blinking effect
for _ in range(3):
voting_display.markdown(f"โณ {model} is deciding...")
time.sleep(0.5)
voting_display.markdown("")
time.sleep(0.5)
# Convert probability to label
if prob < 0.33:
vote = "๐ข Low"
elif prob < 0.46:
vote = "๐ก Medium"
else:
vote = "๐ด High"
votes.append(vote)
voting_display.markdown(f"โ
**{model} voted: {vote}**")
progress_bar.progress((i + 1) / len(models))
time.sleep(1)
progress_bar.empty()
# Create a DataFrame with numeric probabilities
final_df = pd.DataFrame([probabilities], columns=['probs', 'probs_lgb', 'probs_mlp'])
final_df = final_df.astype(float) # Ensure all values are float
# Fazer a prediรงรฃo final com o ensemble
final_probability = ensemble_model.predict_proba(final_df)[:, 1][0] # Probabilidade de classe 1
final_prediction = 1 if final_probability >= 0.25 else 0 # Aplicando threshold de 0.25
# Estilizaรงรฃo do resultado final
st.markdown("---")
if final_prediction == 1:
st.markdown(f"""
<div style="text-align: center; background-color: #ffdddd; padding: 15px; border-radius: 10px;">
<h2>๐จ <b>Final Prediction: 1</b> (Readmission Likely) </h2>
<h3>๐ Probability: {final_probability:.2f} (Threshold: 0.25)</h3>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div style="text-align: center; background-color: #ddffdd; padding: 15px; border-radius: 10px;">
<h2>โ
<b>Final Prediction: 0</b> (No Readmission Risk) </h2>
<h3>๐ Probability: {final_probability:.2f} (Threshold: 0.25)</h3>
</div>
""", unsafe_allow_html=True)
# ๐จ **Weight Visualization: How Much Each Model Contributed**
st.write("### โ๏ธ Model Contribution to Final Decision")
fig, ax = plt.subplots()
ax.bar(models, probabilities, color=["blue", "green", "red"])
ax.set_ylabel("Probability")
ax.set_title("Model Prediction Probabilities")
st.pyplot(fig)
# Show detailed voting breakdown
st.write("### ๐ Voting Breakdown:")
for model, vote in zip(models, votes):
st.write(f"๐น {model}: **{vote}** (Prob: {probabilities[models.index(model)]:.2f})")
else:
st.warning("โ ๏ธ Some model predictions are missing. Please run all models before voting.") |