#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 17 15:38:58 2024 @author: joaopimenta """ import os import streamlit as st import geemap.foliumap as geemap import ee import geopandas as gpd import tempfile import uuid import fiona from datetime import datetime import base64 import rasterio from rasterio.plot import show import numpy as np import cv2 import matplotlib.pyplot as plt from matplotlib import pyplot as plt import pyproj from shapely.geometry import Polygon from rasterio.features import shapes import pandas as pd from skimage import measure from shapely.geometry import Polygon, box, MultiPolygon import matplotlib.pyplot as plt import requests from io import StringIO from rasterio.warp import calculate_default_transform, reproject, Resampling # Set page configuration st.set_page_config(layout="wide") # Define the custom CSS style for the title and subtitle custom_css = """ """ import streamlit as st import time from streamlit_navigation_bar import st_navbar pages = ["Home", "About", "Tutorial", "Worldwide Analysis", "Portugal Analysis"] styles = { "nav": { "background-color": "rgba(0, 0, 0, 0.5)", # Add 50% transparency }, "div": { "max-width": "32rem", }, "span": { "border-radius": "0.26rem", "color": "rgb(255 ,255, 255)", "margin": "0 0.225rem", "padding": "0.375rem 0.625rem", }, "active": { "background-color": "rgba(0 ,0, 200, 0.95)", }, "hover": { "background-color": "rgba(255, 255, 255, 0.95)", }, } page = st_navbar(pages, styles=styles) page = st.sidebar.selectbox("",pages) # Apply the custom CSS style and HTML title using Markdown st.markdown(f"{custom_css}

Real-Time Reservoir Monitoring Platform

", unsafe_allow_html=True) st.markdown("

This software allows you to monitorize the volume storage of almost any water body at your choice. It is still in beta version.

", unsafe_allow_html=True) # Function to process uploaded GeoJSON or KML file and return a GeoDataFrame def process_uploaded_file(data): _, file_extension = os.path.splitext(data.name) file_id = str(uuid.uuid4()) file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}") with open(file_path, "wb") as file: file.write(data.read()) # Use data.read() to write file content if file_extension.lower() == ".kml": fiona.drvsupport.supported_drivers["KML"] = "rw" gdf = gpd.read_file(file_path, driver="KML") elif file_extension.lower() in [".geojson", ".json"]: gdf = gpd.read_file(file_path) else: raise ValueError(f"Unsupported file format: {file_extension}") return gdf import streamlit as st # Sidebar customization st.sidebar.title("About") st.sidebar.markdown( """ This Beta version allows you to visualize the volume storage, water surface elevation and other infor of the majority of reservoirs and lakes worlddwide, in real time using remote sensing, created by João Pimenta """ ) # Create unique keys for each st.radio widget world_key = "Worldwide anaysis" if page == 'Home': import streamlit as st import requests import base64 # Video URL (ensure it's accessible) video_url = "https://raw.githubusercontent.com/joao862/BLU/main/1851190-uhd_3840_2160_25fps.mp4" # Fetch the video from the URL response = requests.get(video_url) # Check if the request was successful if response.status_code == 200: video_bytes = response.content # Convert the video bytes to Base64 video_base64 = base64.b64encode(video_bytes).decode("utf-8") # Set the background video using CSS st.markdown( f""" """, unsafe_allow_html=True ) else: st.error("Failed to load video. Please check the URL or your internet connection.") elif page == "Worldwide Analysis": st.title("Worldwide Analysis") import toml import json st.write("What the hell is wrong here?") from google.oauth2 import service_account import json import tempfile import ee import streamlit as st # Access the Streamlit secrets and convert to a dictionary service_account_info = dict(st.secrets) # Create a temporary file to store the JSON credentials try: with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as temp_json_file: # Write the JSON content to the temporary file json.dump(service_account_info, temp_json_file, indent=4) temp_json_path = temp_json_file.name # Authenticate with Google Earth Engine using the temporary JSON file service_account_email = service_account_info["client_email"] credentials = ee.ServiceAccountCredentials(service_account_email, temp_json_path) ee.Initialize(credentials) st.success("Authenticated and initialized successfully with Google Earth Engine!") except KeyError as e: st.error(f"Missing required field in service account info: {e}") except Exception as e: st.error(f"Error authenticating with Google Earth Engine: {e}") finally: # Optionally clean up the temporary file after initialization try: import os os.remove(temp_json_path) except Exception as cleanup_error: st.warning(f"Could not delete temporary file: {cleanup_error}") # File uploader for GeoJSON or KML uploaded_file = st.file_uploader("Upload a GeoJSON or KML File") HydroLakes = ee.FeatureCollection('projects/ee-joaopedromateusp/assets/HydroLAKES') # List of feature collections datasets = [ ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_21'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_22'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_23'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_24'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_25'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_26'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_27'), ee.FeatureCollection('projects/ee-joaopedromateusp/assets/SWOT_files/SWOT_EU_29'), # Add more datasets ] # Initialize with the first dataset in the list merged_dataset = datasets[0] # Loop through and merge each subsequent dataset for dataset in datasets[1:]: merged_dataset = merged_dataset.merge(dataset) night_mode = 'CartoDB.DarkMatter' normal_mode = 'HYBRID' # Options for confirming the reservoir selection modes = ['day theme', 'night theme'] # Select box to confirm selection confirmation_mode = st.sidebar.selectbox("Choose this lake/reservoir", modes) if confirmation_mode == 'day theme': mode = normal_mode else: mode = normal_mode # Step 1: Create a geemap Map object with the required plugins m = geemap.Map( basemap=mode, plugin_Draw=True, Draw_export=True, locate_control=True, plugin_LatLngPopup=True ) m.set_center(13.5352, 48.8069, 5) from streamlit_folium import st_folium import folium import json # Define visualization parameters to color the polygons blue or yellow vis_params = {'color': 'Blue'} #m.addLayer(HydroLakes.style(**vis_params), {}, 'HydroLakes') # Add the HydroLakes layer to the map m.addLayer(merged_dataset.style(**vis_params), {}, 'Europe') # JavaScript for click events to set session state click_js = """ function addClickHandler(map) { map.on('click', function(e) { const latlng = e.latlng; const coords = [latlng.lat, latlng.lng]; window.parent.postMessage(coords, '*'); }); } addClickHandler(window.map); """ # Add JavaScript to the map m.add_child(folium.Element(f'')) # Display the map in Streamlit st_data = st_folium(m, height=800, width=1600) # Initialize session state for the selected ROI if 'roi' not in st.session_state: st.session_state['roi'] = None if st_data['last_clicked']: lat, lng = st_data['last_clicked']['lat'], st_data['last_clicked']['lng'] point = ee.Geometry.Point([lng, lat]) filtered = merged_dataset.filterBounds(point) info = filtered.getInfo() features = info['features'] if features: properties = features[0]['properties'] coordinates = features[0]['geometry']['coordinates'] # Extracting the required fields lake_name = properties.get('names', 'N/A') lake_id = properties.get('lake_id', 'N/A') latitude = properties.get('lat', 'N/A') longitude = properties.get('lon', 'N/A') ref_area = properties.get('ref_area', 'N/A') storage = properties.get('storage', 'N/A') # Display metrics in Streamlit st.title("Lake Information") # Using Streamlit columns for a clean layout #col1, col2 = st.columns(2) #with col1: #st.metric("Lake Name", lake_name) #st.metric("Lake ID", lake_id) #with col2: #st.metric("Latitude", round(latitude, 4)) #st.metric("Longitude", round(longitude, 4)) # Display reference area with one decimal for clarity #st.metric("Reference Area (sq km)", f"{ref_area:.1f}") # Ensure coordinates are in the correct format for GeoJSON (swapping lon, lat to lat, lon) #if isinstance(coordinates[0][0], list): # Check if it's a nested list (MultiPolygon or Polygon) # Swap lon and lat if necessary #coordinates = [list(map(lambda coord: [coord[1], coord[0]], sub_coord)) for sub_coord in coordinates] # Create the Earth Engine geometry (assuming Polygon type) aoi = ee.Geometry.Polygon(coordinates) roi = aoi globathy_dataset = ee.FeatureCollection("projects/ee-joaopedromateusp/assets/HydroLAKES") # Add the HydroLakes layer to the map m.addLayer(globathy_dataset.style(**vis_params), {}, 'Globathy') point = ee.Geometry.Point([lng, lat]) filtered = globathy_dataset.filterBounds(point) info = filtered.getInfo() features = info['features'] if features: properties = features[0]['properties'] hydrolakes_id = properties.get('Hylak_id', 'N/A') Vol_res = properties.get('Vol_res','N/A') Grand_id = properties.get('Grand_id','N/A') # Using Streamlit columns for a clean layout col1, col2 = st.columns(2) with col1: st.metric("Hydrolakes ID", hydrolakes_id) st.metric("Maximum Volume", Vol_res) with col2: st.metric("GranD ID", Grand_id) import ee import geemap import os import matplotlib.pyplot as plt import rasterio from rasterio.plot import show from skimage import measure from shapely.geometry import Polygon, box from shapely.ops import transform import numpy as np import json # Filter Sentinel-2 images sentinelImageCollection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(roi) \ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 5)) \ .sort('system:time_start', False) # Sort by time_start in descending order # Get the latest (first) image from the sorted collection latest_image = sentinelImageCollection.first() previous_image = sentinelImageCollection.toList(sentinelImageCollection.size()).get(1) previous_image = ee.Image(previous_image) # Define a function to calculate NDWI and mask def calculate_ndwi_and_mask(image): ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI') ndwi_threshold = ndwi.gte(0.0) ndwi_mask = ndwi_threshold.updateMask(ndwi_threshold) return ndwi_mask # Apply the function to the latest image to calculate NDWI mask ndwi_mask = calculate_ndwi_and_mask(latest_image) ndwi_prev_mask = calculate_ndwi_and_mask(previous_image) # Define a function to calculate water area def calculate_water_area(image): water_area = image.multiply(ee.Image.pixelArea()).reduceRegion( reducer=ee.Reducer.sum(), geometry=roi, scale=5 ).get('NDWI') return image.set('water_area', water_area) # Calculate water area for the NDWI mask ndwi_mask_with_area = calculate_water_area(ndwi_mask) ndwi_pre_mask_with_area = calculate_water_area(ndwi_prev_mask) m.add_marker(lat=lat, lon=lng, location=[lat, lng]) m.set_center(lng, lat, 14) globathy_dataset = ee.FeatureCollection("projects/ee-joaopedromateusp/assets/HydroLAKES") # Add the HydroLakes layer to the map m.addLayer(globathy_dataset.style(**vis_params), {}, 'Globathy') point = ee.Geometry.Point([lng, lat]) filtered = globathy_dataset.filterBounds(point) info = filtered.getInfo() features = info['features'] if features: properties = features[0]['properties'] hydrolakes_id = properties.get('Hylak_id', 'N/A') Vol_res = properties.get('Vol_res','N/A') Grand_id = properties.get('Grand_id','N/A') Country = properties.get('Country','N/A') try: # Get the water area information water_area_info = ndwi_mask_with_area.get('water_area').getInfo() pre_water_area_info = ndwi_pre_mask_with_area.get('water_area').getInfo() prev = round((pre_water_area_info / 1e6), 2) water_area_km2 = round((water_area_info / 1e6), 2) variance = round(((water_area_km2 - prev) / prev) * 100, 2) # Calculate variance as a percentage import netCDF4 as nc import numpy as np # Open the NetCDF file nc_file = nc.Dataset('/Users/joaopimenta/Downloads/Master thesis/GLOBathy_hAV_relationships.nc') # Specify the lake ID you want to search for target_lake_id = hydrolakes_id # Replace this with the actual lake ID you're interested in # Find the index of the lake based on the lake ID lake_ids = nc_file.variables['lake_id'][:] # Check if the target lake ID exists in the lake_id variable lake_index = np.where(lake_ids == target_lake_id)[0] if len(lake_index) == 0: st.write("Lake not found in the dataset.") else: lake_index = lake_index[0] # Use the first match if found # Extract coefficients of the area-storage equation for the identified lake area_storage_coeffs = nc_file.variables['f_hA'][lake_index, :] lon_lat = nc_file.variables['lon_lat'][lake_index, :] import numpy as np # Coefficients obtained from the NetCDF dataset a = area_storage_coeffs[0] b = area_storage_coeffs[1] # Calculate the volume using the area-storage equation volume = ((water_area_info/1e6) / a) ** (1 / b) volume_prev = ((pre_water_area_info/1e6) / a) ** (1 / b) vol_variance = round(((volume - volume_prev) / volume_prev) * 100, 2) except Exception as e: st.write("Error retrieving water area information:", e) # Using Streamlit columns for a clean layout col1, col2 = st.columns(2) with col1: st.metric("Lake Name", lake_name) st.metric("Lake ID", lake_id) st.metric("Hydrolakes ID", hydrolakes_id) st.metric("Maximum Volume(10⁸ m³)", Vol_res/10) with col2: # Display metric with variance as delta st.metric( label="Current Water Area", value=f"{water_area_km2} km²", delta=f"{variance}%", # Add percentage change as delta delta_color="normal", help=None, label_visibility="visible", ) st.metric( label="Current Water Volume", value=f"{round(volume,2)} x10⁸m³", delta=f"{vol_variance}%", # Add percentage change as delta delta_color="normal", help=None, label_visibility="visible", ) st.metric("Country",Country) st.metric("GranD ID", Grand_id) else: st.write("No features were selected") # Highlight the selected lake m.addLayer(ee.Image().paint(aoi, 1, 3), {'palette': 'red'}, 'Selected Lake') else: st.write('No polygon found at clicked location.') # Function to export ROI as GeoJSON def export_roi_as_geojson(roi): if roi: roi_geojson = roi.getInfo() if roi_geojson.get('type') == 'Polygon': geojson_str = json.dumps(roi_geojson) return geojson_str else: st.error("GeoJSON type is not supported.") return None else: st.error("No ROI available.") return None geojson_str = export_roi_as_geojson(aoi) if geojson_str: st.download_button( label="Download ROI as GeoJSON", data=geojson_str, file_name="roi.geojson", mime="application/geo+json" ) # Options for confirming the reservoir selection box_reservoir = ['No', 'Yes'] # Select box to confirm selection confirmation = st.selectbox("Choose this lake/reservoir", box_reservoir) # Handle the selection if confirmation == 'Yes': st.session_state['roi'] = aoi # Store the selected ROI in session state roi = aoi # Set the roi for further processing st.success("Reservoir selected successfully!") else: st.warning("No reservoir selected yet.") # If a region of interest (ROI) is available, provide download if uploaded_file is not None: try: gdf = process_uploaded_file(uploaded_file) if not gdf.empty: roi_fc = geemap.geopandas_to_ee(gdf) roi_geometry = roi_fc.geometry() aoi = roi_geometry st.session_state['roi'] = aoi # Store the selected ROI in session state roi = aoi # Set the roi for further processing st.success("Reservoir selected successfully!") # Add markers for each feature in the GeoDataFrame for index, row in gdf.iterrows(): latitude, longitude = row.geometry.centroid.coords[0] # Get centroid coordinates m.add_marker(location =[lng,lat]) # Set the map center and zoom level based on the selected location m.set_center(lat, lng, 12) globathy_dataset = ee.FeatureCollection("projects/ee-joaopedromateusp/assets/HydroLAKES") # Add the HydroLakes layer to the map m.addLayer(globathy_dataset.style(**vis_params), {}, 'Globathy') point = ee.Geometry.Point([lng, lat]) filtered = globathy_dataset.filterBounds(point) info = filtered.getInfo() features = info['features'] if features: properties = features[0]['properties'] hydrolakes_id = properties.get('Hylak_id', 'N/A') Vol_res = properties.get('Vol_res','N/A') Grand_id = properties.get('Grand_id','N/A') # Using Streamlit columns for a clean layout col1, col2 = st.columns(2) with col1: st.metric("Hydrolakes ID", hydrolakes_id) st.metric("Maximum Volume", Vol_res) with col2: st.metric("GranD ID", Grand_id) m.addLayer(roi_fc, {}, "Uploaded Data") except Exception as e: st.write(f"Error processing uploaded file: {e}") if 'roi' in st.session_state and 'aoi' in locals(): roi = aoi # Use the selected ROI # Create a select box for choosing the area-volume relationship method opt = ["Don't have that info", "Write the A-V function of your reservoir", "upload excel sheet", "upload the DEM"] method = st.sidebar.selectbox( "Choose the area-volume relationship input", opt, key="method") if method == ("Write the A-V function of your reservoir"): volumes =[] column1, column2 = st.sidebar.columns(2) with column1: a = st.number_input("Coefficient a") with column2 : b = st.number_input("Coefficient b") elif method == ("upload excel sheet"): # File uploader for Excel files uploaded_file = st.file_uploader("Upload an Excel File", type=["xlsx"]) if uploaded_file is not None: # Add an input box for the user to enter a sheet index number sheet_index = int(st.number_input("Enter the index of the Excel sheet (first sheet is 0)", min_value=0)) st.write("You entered sheet index:", sheet_index) try: # Load the Excel file into a DataFrame from the specified sheet df = pd.read_excel(uploaded_file, sheet_name=sheet_index) # Check if the required columns are present if 'ÁREA (m2)' not in df.columns or 'VOLUME (m3)' not in df.columns: st.error("Required columns 'ÁREA (m2)' or 'VOLUME (m3)' not found in the sheet.") else: # Drop rows with NaN values in the required columns df = df.dropna(subset=['ÁREA (m2)', 'VOLUME (m3)']) # Initialize a dictionary dictionary = {} # Populate the dictionary with 'ÁREA (m2)' as keys and 'VOLUME (m3)' as values for index, row in df.iterrows(): area = row['ÁREA (m2)'] volume = row['VOLUME (m3)'] dictionary[area] = volume # Display the created dictionary st.write("dictionary =", dictionary) except ValueError as e: st.error(f"Error reading sheet index {sheet_index}: {e}") except Exception as e: st.error(f"An error occurred: {e}") elif method == "upload the DEM": import rasterio import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable # File uploader for GeoTIFF dem_file = st.file_uploader("Upload a GeoTIFF File") if dem_file is not None: with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(dem_file.getbuffer()) tmp_file_path = tmp_file.name # Load the raster data lakeRst = rasterio.open(tmp_file_path) st.write("Number of bands:", lakeRst.count) # Raster resolution resolution = lakeRst.res st.write("Resolution:", resolution) # Read the first band (assuming single band raster) lakeBottom = lakeRst.read(1) st.write("Sample raster data:\n", lakeBottom[:5, :5]) # Replace no-data value with np.nan noDataValue = np.copy(lakeBottom[0, 0]) lakeBottom = lakeBottom.astype(float) lakeBottom[lakeBottom == noDataValue] = np.nan # Display the raster data plt.figure(figsize=(12, 12)) plt.imshow(lakeBottom, cmap='viridis') plt.title('Lake Bottom Elevation') plt.colorbar(label='Elevation (masl)') st.pyplot(plt) # Calculate minimum and maximum elevation minElev = np.nanmin(lakeBottom) maxElev = np.nanmax(lakeBottom) st.write('Min bottom elevation: %.2f m, Max bottom elevation: %.2f m' % (minElev, maxElev)) # Define the number of steps for calculation nSteps = 20 # Generate elevation steps elevSteps = np.round(np.linspace(minElev, maxElev, nSteps), 2) st.write("Elevation steps:", elevSteps) # Define function to calculate volume at a given elevation step def calculateVol(elevStep, elevDem, lakeRst): tempDem = elevStep - elevDem[elevDem < elevStep] tempVol = tempDem.sum() * lakeRst.res[0] * lakeRst.res[1] return tempVol # Define function to calculate inundated area for a given elevation def calculateArea(elevStep, elevDem): inundated_mask = np.where(elevDem <= elevStep, 1, 0) area = np.sum(inundated_mask) * resolution[0] * resolution[1] return area # Calculate volumes and areas for each elevation step volArray = [] areaArray = [] for elev in elevSteps: tempVol = calculateVol(elev, lakeBottom, lakeRst) tempArea = calculateArea(elev, lakeBottom) volArray.append(tempVol) areaArray.append(tempArea) st.write(f"Elevation: {elev}, Area: {tempArea}, Volume: {tempVol / 1e6} MCM") # Convert volumes to million cubic meters volArrayMCM = [round(vol / 1e6, 2) for vol in volArray] # Print results st.write("Elevation steps (m):", elevSteps) st.write("Volumes (MCM):", volArrayMCM) # Plot elevation vs volume fig, ax = plt.subplots(figsize=(12, 5)) ax.plot(volArrayMCM, elevSteps, label='Lake Volume Curve') ax.grid(True) ax.legend() ax.set_xlabel('Volume (MCM)') ax.set_ylabel('Elevation (masl)') st.pyplot(fig) # Plot lake bottom elevation and volume curve side by side fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(20, 8), gridspec_kw={'width_ratios': [2, 1]}) ax1.set_title('Lake Bottom Elevation') botElev = ax1.imshow(lakeBottom, cmap='viridis') divider = make_axes_locatable(ax1) cax = divider.append_axes('bottom', size='5%', pad=0.5) fig.colorbar(botElev, cax=cax, orientation='horizontal', label='Elevation (masl)') ax2.plot(volArrayMCM, elevSteps, label='Lake Volume Curve') ax2.grid(True) ax2.legend() ax2.set_xlabel('Volume (MCM)') ax2.set_ylabel('Elevation (masl)') st.pyplot(fig) # Print elevation and corresponding inundated area st.write("Elevation (m) Inundated Area (sq. meters)") for elev, area in zip(elevSteps, areaArray): st.write("{:.2f} {:.2f}".format(elev, area)) st.write("Inundated Area (sq. meters) Volume (MCM)") for area, vol in zip(areaArray, volArrayMCM): st.write("{:.2f} {:.2f}".format(area, vol)) # Plot the inundated area-volume curve fig, ax = plt.subplots(figsize=(10, 6)) ax.plot(areaArray, volArrayMCM, label='Inundated Area-Volume Curve') ax.set_xlabel('Inundated Area (square meters)') ax.set_ylabel('Volume (MCM)') ax.grid(True) ax.legend() plt.title('Inundated Area-Volume Curve') st.pyplot(fig) # Create and display area-volume curve dictionary area_volume_curve = {} for area,vol in zip(areaArray, volArrayMCM): area_volume_curve[float(area)]= vol st.write(area_volume_curve) import datetime # Date input for filtering Sentinel-2 images startDate = st.sidebar.date_input("Start Date", value=None, min_value=None, max_value=None, key=None, help=None, on_change=None, args=None, kwargs=None, format="YYYY/MM/DD", disabled=False, label_visibility="visible") endDate = st.sidebar.date_input("End Date", value=datetime.datetime.now(), min_value=None, max_value=None, key=None, help=None, on_change=None, args=None, kwargs=None, format="YYYY/MM/DD", disabled=False, label_visibility="visible") # Sidebar selection for output output = st.sidebar.multiselect("Select the output", ["Water Area", "Water Surface Elevation", "Water Volume", "Bathymetry file", "Timelapse", "Storage-Capacity curve" ]) st.sidebar.info("Choose the cloud coverage percentage of the satellite images") threshold = st.sidebar.slider("Cloud Percentage Threshold", 0, 20, 5) if st.sidebar.button("Start computing") and startDate and endDate and threshold: if "Timelapse" in output: with st.spinner('Creating Timelapse...'): # Export the GIF import geemap gif_path = "/Users/joaopimenta/Downloads/Master thesis/Python scripts/Test_gee/ndwi_timelapse.gif" Map = geemap.Map() Map.add_landsat_ts_gif(layer_name='Timelapse', roi=roi, label=f'{lat}, {lng}', start_year=2021, end_year=2024, start_date='06-10', end_date='09-20', bands=['SWIR1', 'NIR', 'Red'], vis_params=None, dimensions=768, frames_per_second=2, font_size=30, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, out_gif=gif_path, download=True, apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue']) file_ = open(gif_path, "rb") contents = file_.read() data_url = base64.b64encode(contents).decode("utf-8") file_.close() st.markdown( f'timelapse gif', unsafe_allow_html=True, ) # Convert the date objects to strings in the format expected by EE start_date_str = startDate.strftime('%Y-%m-%d') end_date_str = endDate.strftime('%Y-%m-%d') sentinel_image_collection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(roi) \ .filterDate(start_date_str, end_date_str) sentinel_image = sentinel_image_collection \ .sort('CLOUDY_PIXEL_PERCENTAGE') \ .first() \ .clip(roi) # Visualize using RGB m.addLayer(sentinel_image, {'min': 0.0, 'max': 2000, 'bands': ['B4', 'B3', 'B2']}, 'RGB') ndwi = sentinel_image.normalizedDifference(['B3', 'B8']).rename('NDWI') m.addLayer(ndwi, {'palette': ['red', 'yellow', 'green', 'cyan', 'blue']}, 'NDWI') # Create NDWI mask ndwi_threshold = ndwi.gte(0.0) ndwi_mask = ndwi_threshold.updateMask(ndwi_threshold) m.addLayer(ndwi_threshold, {'palette': ['black', 'white']}, 'NDWI Binary Mask') m.addLayer(ndwi_mask, {'palette': ['blue']}, 'NDWI Mask') if "Water Surface Elevation" in output: # Send a request to the Hydrocron API to get lake data in CSV format url = ( "https://soto.podaac.earthdatacloud.nasa.gov/hydrocron/v1/timeseries?" "feature=PriorLake" f"&feature_id={lake_id}" f"&start_time={start_date_str}T00:00:00Z" f"&end_time={end_date_str}T00:00:00Z" "&output=csv" "&fields=time_str,wse" ) # Request the data hydrocron_response = requests.get(url).json() # Extract CSV data from the response csv_str = hydrocron_response['results']['csv'] # Convert the CSV string into a pandas DataFrame df = pd.read_csv(StringIO(csv_str)) # Prepare to plot water surface elevation (WSE) and area # Convert 'time_str' column to datetime format df['time_str'] = pd.to_datetime(df['time_str'], errors='coerce') # Filter and store dates and elevations df_filtered = df.dropna(subset=['time_str', 'wse']) df_filtered['wse'] = pd.to_numeric(df_filtered['wse'], errors='coerce') df_filtered = df_filtered.dropna(subset=['wse']) # Plot water surface elevation (WSE) over time plt.figure(figsize=(10, 5)) plt.plot(df_filtered['time_str'], df_filtered['wse'], marker='o', linestyle='-') plt.xlabel('Date') plt.ylabel('Water Surface Elevation (m)') plt.title(f'Water Surface Elevation for Lake {lake_name}') plt.xticks(rotation=45) plt.grid(True) # Show the plot in Streamlit st.pyplot(plt) # Display the filtered DataFrame st.write(df_filtered[['time_str', 'wse']]) with st.spinner('Retrieving satilite images...'): #Define a function to calculate NDWI def calculate_ndwi(image): ndwi = image.normalizedDifference(["B8", "B3"]) # B8 is NIR and B3 is green return ndwi # Filter Sentinel-2 images sentinelImageCollection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(roi) \ .filterDate(start_date_str, end_date_str) \ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', threshold)) \ # Check if images are available num_images = sentinelImageCollection.size().getInfo() st.write("Number of images:", num_images) volumes = [] # Alternatively, convert acquisition times to readable format (if needed) acquisition_times = sentinelImageCollection.aggregate_array('system:time_start').getInfo() acquisition_dates = [datetime.datetime.utcfromtimestamp(time / 1000).strftime('%Y-%m-%d') for time in acquisition_times] if num_images == 0: st.warning("No images available within the specified date range.") else: if threshold >= 15: st.write("CLoudless Algorithm will identify and remove the effects of clouds and shadows") START_DATE = start_date_str END_DATE = end_date_str CLOUD_FILTER = 40 CLD_PRB_THRESH = 70 NIR_DRK_THRESH = 0.15 CLD_PRJ_DIST = 2 BUFFER = 100 # Function to get Sentinel-2 surface reflectance and cloud probability collections def get_s2_sr_cld_col(aoi, start_date, end_date): s2_sr_col = (ee.ImageCollection('COPERNICUS/S2_SR') .filterBounds(aoi) .filterDate(start_date, end_date) .filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE', CLOUD_FILTER))) s2_cloudless_col = (ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') .filterBounds(aoi) .filterDate(start_date, end_date)) return ee.ImageCollection(ee.Join.saveFirst('s2cloudless').apply(**{ 'primary': s2_sr_col, 'secondary': s2_cloudless_col, 'condition': ee.Filter.equals(**{ 'leftField': 'system:index', 'rightField': 'system:index' }) })) # Apply the function to build the collection s2_sr_cld_col = get_s2_sr_cld_col(roi, START_DATE, END_DATE) # Function to get cloud cover percentage for an image def get_cloud_cover_percentage(image): cloud_cover = ee.Image(image).get('CLOUDY_PIXEL_PERCENTAGE') return ee.Feature(None, {'cloud_cover': cloud_cover, 'image_id': image.id()}) # Apply the function to the collection image_list = s2_sr_cld_col.map(get_cloud_cover_percentage).getInfo() # Debug: Print the properties of the first image to inspect the available properties print("Inspecting the first image's properties:") print(image_list['features'][0]['properties']) # Extract the image ids, cloud covers, and dates (if available) image_info = [] for f in image_list['features']: image_id = f['properties'].get('image_id', 'Unknown') cloud_cover = f['properties'].get('cloud_cover', 'Unknown') timestamp = f['properties'].get('system:time_start', None) # If timestamp is None, we'll set it to 'Unknown' if timestamp: date = datetime.utcfromtimestamp(timestamp / 1000).strftime('%Y-%m-%d') else: date = 'Unknown' image_info.append((image_id, cloud_cover, date)) print("Available images and their cloud cover percentages:") for idx, (image_id, cloud_cover, date) in enumerate(image_info): print(f"{idx}: Image ID: {image_id}, Date: {date}, Cloud Cover: {cloud_cover}%") water_area_info = [] # Count the number of images in the collection num_images = s2_sr_cld_col.size().getInfo() print(f"Total number of images in the collection: {num_images}") # Loop through each image in the collection and print its cloud cover for i in range(num_images): selected_idx = i selected_image_id = image_info[selected_idx][0] cloud_cover = image_info[selected_idx][1] # Get the cloud cover for the selected image selected_image = ee.Image(s2_sr_cld_col.filter(ee.Filter.eq('system:index', selected_image_id)).first()) print(f"Image ID: {selected_image_id}, Cloud Cover: {cloud_cover}%") if cloud_cover >= 15: # Define functions to add cloud and shadow bands def add_cloud_bands(img): cld_prb = ee.Image(img.get('s2cloudless')).select('probability') is_cloud = cld_prb.gt(CLD_PRB_THRESH).rename('clouds') return img.addBands(ee.Image([cld_prb, is_cloud])) def add_shadow_bands(img): not_water = img.select('SCL').neq(6) SR_BAND_SCALE = 1e4 dark_pixels = img.select('B8').lt(NIR_DRK_THRESH * SR_BAND_SCALE).multiply(not_water).rename('dark_pixels') shadow_azimuth = ee.Number(90).subtract(ee.Number(img.get('MEAN_SOLAR_AZIMUTH_ANGLE'))) cld_proj = (img.select('clouds').directionalDistanceTransform(shadow_azimuth, CLD_PRJ_DIST * 10) .reproject(crs=img.select(0).projection(), scale=100) .select('distance').mask().rename('cloud_transform')) shadows = cld_proj.multiply(dark_pixels).rename('shadows') return img.addBands(ee.Image([dark_pixels, cld_proj, shadows])) def add_cld_shdw_mask(img): img_cloud = add_cloud_bands(img) img_cloud_shadow = add_shadow_bands(img_cloud) is_cld_shdw = img_cloud_shadow.select('clouds').add(img_cloud_shadow.select('shadows')).gt(0) is_cld_shdw = (is_cld_shdw.focalMin(2).focalMax(BUFFER * 2 / 20) .reproject(crs=img.select([0]).projection(), scale=20) .rename('cloudmask')) return img_cloud_shadow.addBands(is_cld_shdw) # Define the function to apply the cloud and shadow mask def apply_cld_shdw_mask(img): not_cld_shdw = img.select('cloudmask').Not() return img.select('B.*').updateMask(not_cld_shdw) # Add cloud and shadow bands, apply the mask selected_image_with_mask = add_cld_shdw_mask(selected_image) cloud_free_image = apply_cld_shdw_mask(selected_image_with_mask) # Define a function to calculate NDWI and mask def calculate_ndwi_and_mask(image): ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI') ndwi_threshold = ndwi.gte(0.0) ndwi_mask = ndwi_threshold.updateMask(ndwi_threshold) return ndwi_mask # Apply the function to the latest image to calculate NDWI mask ndwi_mask = calculate_ndwi_and_mask(selected_image) # Define a function to calculate water area def calculate_water_area(image): water_area = image.multiply(ee.Image.pixelArea()).reduceRegion( reducer=ee.Reducer.sum(), geometry=roi, scale=5 ).get('NDWI') return image.set('water_area', water_area) # Calculate water area for the NDWI mask ndwi_mask_with_area = calculate_water_area(ndwi_mask) waterarea = ndwi_mask_with_area.get('water_area').getInfo() w = waterarea #print(f"This is the water area of the NDWI image:{w}") # Load the bathymetry dataset from Earth Engine globathy = ee.Image("projects/sat-io/open-datasets/GLOBathy/GLOBathy_bathymetry") # Export the data as an image out_dir = "/Users/joaopimenta/Desktop/GEE_test" # Specify the output directory if not os.path.exists(out_dir): os.makedirs(out_dir) out_image_path = os.path.join(out_dir, "globathy_bathymetry.tif") # Specify the output image path # Export the image geemap.ee_export_image(globathy, filename=out_image_path, scale=10, region=roi) # Load Bathymetry image bathymetry_path = out_image_path bathymetry_dataset = rasterio.open(bathymetry_path) #print(f"This is the ndwi area of the lake {ndwi_masked_area}") # Export the binary water mask to a GeoTIFF file folder_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + "_dam_volume_images_tif" directory = "/Users/joaopimenta/Desktop" folder_path = os.path.join(directory, folder_name) os.makedirs(folder_path) geemap.ee_export_image( ndwi_mask, filename=os.path.join(folder_path, "binary_NDWI.tif"), region=roi, scale=10 ) file_name = "binary_NDWI.tif" file_path = os.path.join(folder_path, file_name) # Load NDWI image ndwi_path = file_path # Update this path ndwi_dataset = rasterio.open(ndwi_path) ndwi = ndwi_dataset.read(1) with rasterio.open(file_path) as src: ndwi_data = src.read(1) # Read the first band transform = src.transform # Convert NDWI to binary format for visualization binary_ndwi = np.where(ndwi_data == 1, 255, 0).astype(np.uint8) # Calculate the area of the detected water bodies from binary mask def calculate_area(image, transform): # Mask the image to include only water water_mask = image == 0 # Compute the area in square meters pixel_area = abs(transform[0] * transform[4]) # pixel size (in square meters) water_area_pixels = np.sum(water_mask) total_area_m2 = water_area_pixels * pixel_area return total_area_m2 # Calculate the area using the converted binary mask total_area_m2 = calculate_area(binary_ndwi, transform)/ 1e3 #print(f"Total area calculated from binary mask: {total_area_m2 :.2f} km²") # Plot the results plt.figure(figsize=(15, 10)) # Binary NDWI (K-means method) plt.subplot(1, 2, 1) plt.imshow(binary_ndwi, cmap='gray') plt.title('Binary NDWI (K-means)') # Identified contour (K-means method) plt.subplot(1, 2, 2) contour_image = np.zeros_like(binary_ndwi) contours, _ = cv2.findContours(binary_ndwi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: cv2.drawContours(contour_image, [max(contours, key=cv2.contourArea)], -1, (255), 2) plt.imshow(contour_image, cmap='gray') plt.title('Identified Dam Contour (K-means)') plt.show() # Check for cloud pixels within the dam (ROI) cloud_pixels_in_roi = selected_image_with_mask.select('cloudmask').reduceRegion( reducer=ee.Reducer.sum(), geometry=roi, scale=10 ).get('cloudmask').getInfo() print(f"This is the cloud pixels in the ROI:{cloud_pixels_in_roi}") # Export the cloud mask geemap.ee_export_image( selected_image_with_mask.select('cloudmask'), filename=os.path.join(folder_path, "cloud_mask.tif"), region=roi, scale=10 ) cloud_mask_path = os.path.join(folder_path, "cloud_mask.tif") cloud_mask_dataset = rasterio.open(cloud_mask_path) cloud_mask = cloud_mask_dataset.read(1) # Reproject the cloud mask to match NDWI resolution resampled_cloud_mask = np.empty_like(ndwi) reproject( source=cloud_mask, destination=resampled_cloud_mask, src_transform=cloud_mask_dataset.transform, src_crs=cloud_mask_dataset.crs, dst_transform=ndwi_dataset.transform, dst_crs=ndwi_dataset.crs, resampling=Resampling.nearest) # Mask the NDWI image by removing cloud pixels ndwi_masked = np.where(resampled_cloud_mask == 0, ndwi, np.nan) # Load Bathymetry image bathymetry_dataset = rasterio.open(bathymetry_path) # Reproject Bathymetry to the NDWI CRS dst_crs = ndwi_dataset.crs transform, width, height = calculate_default_transform( bathymetry_dataset.crs, dst_crs, bathymetry_dataset.width, bathymetry_dataset.height, *bathymetry_dataset.bounds) kwargs = bathymetry_dataset.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height }) reprojected_bathymetry = np.empty((height, width), dtype=np.float32) reproject( source=rasterio.band(bathymetry_dataset, 1), destination=reprojected_bathymetry, src_transform=bathymetry_dataset.transform, src_crs=bathymetry_dataset.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest) # Resample Bathymetry to match NDWI resolution resampled_bathymetry = np.empty_like(ndwi) reproject( source=reprojected_bathymetry, destination=resampled_bathymetry, src_transform=transform, src_crs=dst_crs, dst_transform=ndwi_dataset.transform, dst_crs=dst_crs, resampling=Resampling.bilinear) # Plot the images fig, ax = plt.subplots(figsize=(10, 10)) # Plot the NDWI image ndwi_extent = (ndwi_dataset.bounds.left, ndwi_dataset.bounds.right, ndwi_dataset.bounds.bottom, ndwi_dataset.bounds.top) cax_ndwi = ax.imshow(ndwi_masked, cmap='Blues', extent=ndwi_extent, alpha=0.6) # Overlay the Bathymetry image bathy_extent = (ndwi_dataset.bounds.left, ndwi_dataset.bounds.right, ndwi_dataset.bounds.bottom, ndwi_dataset.bounds.top) cax_bathy = ax.imshow(resampled_bathymetry, cmap='viridis', extent=bathy_extent, alpha=0.4) fig.colorbar(cax_bathy, ax=ax, fraction=0.046, pad=0.04, label='Bathymetry') # Plot the NDWI cloud-removed image fig, ax = plt.subplots(figsize=(10, 10)) # Plot the NDWI image ndwi_extent = (ndwi_dataset.bounds.left, ndwi_dataset.bounds.right, ndwi_dataset.bounds.bottom, ndwi_dataset.bounds.top) cax_ndwi = ax.imshow(ndwi_masked, cmap='Blues', extent=ndwi_extent) fig.colorbar(cax_ndwi, ax=ax, fraction=0.046, pad=0.04, label='NDWI') # Get the cloud mask from the selected image cloud_mask = selected_image_with_mask.select('cloudmask') # Apply cloud mask to the NDWI mask ndwi_cloud_removed_mask = ndwi_mask.updateMask(cloud_mask.Not()) # Calculate the pixel area for the masked NDWI image pixel_area = ndwi_cloud_removed_mask.multiply(ee.Image.pixelArea()) # Reduce the region to calculate the total water area water_area = pixel_area.reduceRegion( reducer=ee.Reducer.sum(), geometry=roi, scale=10, # Adjust the scale as needed maxPixels=1e10 ) # Assuming water_area is the result from reduceRegion water = water_area.getInfo().get('NDWI') print(water) # Get the total water area in square meters total_water_area_m2 = total_area_m2 # Convert the area to square kilometers total_water_area_km2 = total_water_area_m2 / 1e6# Convert the area to square kilometers total_water_area_adjusted = total_water_area_m2 area_cloud_aftected = w - total_water_area_adjusted cloud_affect_percentage = area_cloud_aftected/ cloud_pixels_in_roi print(f"The total NDWI water area is:{w}") print(f"The adjusted water area is: {total_water_area_adjusted}") print(f"The total amount of pixels covering the reservoir is:{area_cloud_aftected}") print(f"This is the area cloud pixels in the ROI:{cloud_pixels_in_roi*10}") print(f"The percentage of pixels which affect the reservoir's area are :{cloud_affect_percentage}") if cloud_pixels_in_roi > 0: import rasterio import numpy as np import matplotlib.pyplot as plt from skimage import measure from shapely.geometry import Polygon from pyproj import Transformer import rasterio.transform from scipy.ndimage import binary_fill_holes # To fill inside polygons from rasterio.warp import reproject, Resampling, calculate_default_transform # Path to bathymetry raster file path_bathymetry = "/Users/joaopimenta/Desktop/GEE_test/globathy_bathymetry.tif" # Path to NDWI raster file (the one with the projection you want) path_ndwi = ndwi_path path_cloud_mask = cloud_mask_path # Load Bathymetry image bathymetry_dataset = rasterio.open(path_bathymetry) cloud_mask_dataset = rasterio.open(path_cloud_mask) ndwi_dataset = rasterio.open(path_ndwi) # Reproject Bathymetry to the NDWI CRS if necessary dst_crs = ndwi_dataset.crs transform, width, height = calculate_default_transform( bathymetry_dataset.crs, dst_crs, bathymetry_dataset.width, bathymetry_dataset.height, *bathymetry_dataset.bounds) kwargs = bathymetry_dataset.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height }) reprojected_bathymetry = np.empty((height, width), dtype=np.float32) reproject( source=rasterio.band(bathymetry_dataset, 1), destination=reprojected_bathymetry, src_transform=bathymetry_dataset.transform, src_crs=bathymetry_dataset.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest) # Reproject cloud mask to the bathymetry CRS if necessary if bathymetry_dataset.crs != cloud_mask_dataset.crs: print("CRS misalignment detected. Reprojecting cloud mask to bathymetry CRS.") reprojected_cloud_mask = np.empty_like(reprojected_bathymetry) reproject( source=rasterio.band(cloud_mask_dataset, 1), destination=reprojected_cloud_mask, src_transform=cloud_mask_dataset.transform, src_crs=cloud_mask_dataset.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest ) else: reprojected_cloud_mask = cloud_mask_dataset.read(1) # Resample Bathymetry and cloud mask to match NDWI resolution if necessary resampled_bathymetry = np.empty_like(ndwi_dataset.read(1)) resampled_cloud_mask = np.empty_like(ndwi_dataset.read(1)) reproject( source=reprojected_bathymetry, destination=resampled_bathymetry, src_transform=transform, src_crs=dst_crs, dst_transform=ndwi_dataset.transform, dst_crs=dst_crs, resampling=Resampling.bilinear) reproject( source=reprojected_cloud_mask, destination=resampled_cloud_mask, src_transform=transform, src_crs=dst_crs, dst_transform=ndwi_dataset.transform, dst_crs=dst_crs, resampling=Resampling.nearest) # Load bathymetry raster data lakeBottom = resampled_bathymetry resolution = bathymetry_dataset.res lake_crs = bathymetry_dataset.crs lake_transform = bathymetry_dataset.transform # Load NDWI raster data (to get CRS and extent) ndwi_extent = (ndwi_dataset.bounds.left, ndwi_dataset.bounds.right, ndwi_dataset.bounds.bottom, ndwi_dataset.bounds.top) # Replace no-data value with np.nan for the bathymetry raster noDataValue = lakeBottom[0, 0] lakeBottom = lakeBottom.astype(float) lakeBottom[lakeBottom == noDataValue] = np.nan # Calculate minimum and maximum elevation minElev = np.nanmin(lakeBottom) maxElev = np.nanmax(lakeBottom) # Define number of steps for calculation nSteps = 50 elevSteps = np.round(np.linspace(minElev, maxElev, nSteps), 2) # Define function to create a mask for a specific elevation def createMaskForElevation(elevation, elevDem, cloud_mask): # Create a mask based on the elevation mask = np.where(elevDem <= elevation, 1, 0) # Fill holes inside the polygon filled_mask = binary_fill_holes(mask) * mask # Ensures it's a binary mask waterarea = np.sum(mask) * (resolution[0] * resolution[1]) area_Array.append(waterarea) # Apply the cloud mask, setting cloud-covered pixels to 0 filled_mask[cloud_mask == 1] = 0 return filled_mask # Set up transformation to match NDWI CRS transformer = Transformer.from_crs(lake_crs, ndwi_dataset.crs, always_xy=True) # Arrays to store the areas for each elevation step areaArray = [] area_Array = [] # Plot setup fig, ax = plt.subplots(figsize=(12, 10)) colors = plt.cm.viridis(np.linspace(0, 1, len(elevSteps))) for i, elev in enumerate(elevSteps): # Create a mask for the current elevation and apply cloud mask mask = createMaskForElevation(elev, lakeBottom, resampled_cloud_mask) # Calculate water area by summing valid pixels (non-cloud, non-zero) water_area = np.sum(mask) * (resolution[0] * resolution[1]) # Pixel resolution area areaArray.append(water_area) # Find contours (polygons) from the mask contours = measure.find_contours(mask, 0.5) # Reproject and plot each contour as a polygon for contour in contours: lon_lat_coords = rasterio.transform.xy(lake_transform, contour[:, 0], contour[:, 1]) x_coords, y_coords = np.array(lon_lat_coords[0]), np.array(lon_lat_coords[1]) # Reproject coordinates to NDWI CRS x_proj, y_proj = transformer.transform(x_coords, y_coords) # Plot the reprojected contour ax.plot(x_proj, y_proj, color=colors[i], label=f'Elevation {elev} m' if i == 0 else "") # Set the same extent as the NDWI image ax.set_xlim(ndwi_extent[0], ndwi_extent[1]) ax.set_ylim(ndwi_extent[2], ndwi_extent[3]) # Plot the elevation vs area areaArraySqM = [area * 1e8 for area in areaArray] # Convert to square meters area_ArraySqM = [area * 1e8 for area in area_Array] # Paths to the raster file path = "/Users/joaopimenta/Desktop/GEE_test/globathy_bathymetry.tif" # Load the raster data lakeRst = rasterio.open(path) lakeBottom = lakeRst.read(1) # Raster resolution (in meters, assuming UTM projection) resolution = lakeRst.res print("Resolution:", resolution) # Replace no-data value with np.nan noDataValue = np.copy(lakeBottom[0, 0]) lakeBottom = lakeBottom.astype(float) lakeBottom[lakeBottom == noDataValue] = np.nan # Get the pixel size from raster resolution (in meters) pixelArea = lakeRst.res[0] * lakeRst.res[1] # in square meters # Calculate the area of the detected water bodies from binary mask def calculate_area(image, transform): # Mask the image to include only water water_mask = image == 0 # Compute the area in square meters pixel_area = abs(transform[0] * transform[4]) # pixel size (in square meters) water_area_pixels = np.sum(water_mask) total_area_m2 = water_area_pixels * pixel_area return total_area_m2 # Define function to create mask for a specific elevation def createMaskForElevation(elevation, elevDem): mask = np.where(elevDem <= elevation, 1, 0) # White pixels for inundated area return mask # Arrays to store the areas for each elevation step area_normal_Array = [] # Plot all polygons representing water area for each elevation step fig, ax = plt.subplots(figsize=(12, 10)) # Colors for different elevation levels colors = plt.cm.viridis(np.linspace(0, 1, len(elevSteps))) # Loop over each elevation step, calculate area, and plot polygons for i, elev in enumerate(elevSteps): # Create a mask for the current elevation step mask = createMaskForElevation(elev, lakeBottom) # Calculate the water area at this elevation waterArea = np.sum(mask) * pixelArea # sum of all '1' pixels * pixel area area_normal_Array.append(waterArea) # Store the area for this elevation # Find contours (polygons) from the mask contours = measure.find_contours(mask, 0.5) # Plot each contour as a polygon for contour in contours: # Transform contour coordinates to UTM coordinates using the raster transform utm_coords = rasterio.transform.xy(lakeRst.transform, contour[:, 0], contour[:, 1]) x_coords, y_coords = np.array(utm_coords[0]), np.array(utm_coords[1]) # Plot the polygon for the current elevation step ax.plot(x_coords, y_coords, color=colors[i], label=f'Elevation {elev} m' if i == 0 else "") # Plot the elevation vs area # Multiply the area by 1,000,000 to convert from km² to m² if necessary area_normal_ArraySqM = [area * 1e8 for area in area_normal_Array] # Convert to square meters # Function to create a binary mask for the chosen elevation def createMaskForElevation(elevation, elevDem, resolution): # Step 1: Generate the initial binary mask (1 for water, 0 for no water) mask = np.where(elevDem <= elevation, 1, 0) # Step 2: Fill the holes inside the lake region filled_mask = binary_fill_holes(mask) * mask # Fill holes only inside the mask # Step 3: Create a mask for the lake region (anything inside the boundary is considered lake) lake_mask = np.where(np.isnan(elevDem), 1, 0) # NaN represents outside the lake # Step 4: Assign a value of 1 to everything outside the lake region result_mask = np.where(lake_mask == 1, 1, filled_mask) # Step 5: Calculate the inundated area for the white pixels inside the lake area = np.sum(filled_mask) * resolution[0] * resolution[1] return result_mask, area # Ensure differences, areaArraySqM, and elev are arrays or lists differences = [] for area in areaArraySqM: dif = abs(water - area) # Absolute difference differences.append(dif) print(f"The water area without the cloud pixels is: {water}") # Find the index of the smallest difference best_match_index = differences.index(min(differences)) best_match = area_ArraySqM[best_match_index] # Reverse the elevation steps and convert to a list to allow indexing step_elevation_reversed = list(reversed(elevSteps)) # Allow user to input a specific elevation based on the best match index specificElevation = step_elevation_reversed[best_match_index] # Generate the binary mask and calculate the area for the selected elevation maskForSpecificElevation, specificArea = createMaskForElevation(specificElevation, lakeBottom, resolution) # Load NDWI image and bathymetry mask ndwi_dataset = rasterio.open(path_ndwi) # Path to NDWI image ndwi_crs = ndwi_dataset.crs ndwi_transform = ndwi_dataset.transform ndwi_res = ndwi_dataset.res # Ensure the mask for the specific elevation is reprojected to the NDWI's CRS, extent, and resolution mask_for_elevation_reprojected = np.empty_like(ndwi_dataset.read(1)) reproject( source=maskForSpecificElevation, # Mask to reproject destination=mask_for_elevation_reprojected, src_transform=lake_transform, # Transform from the bathymetry mask src_crs=lake_crs, # CRS of the mask dst_transform=ndwi_transform, # NDWI transform dst_crs=ndwi_crs, # NDWI CRS resampling=Resampling.nearest # Nearest neighbor interpolation for binary masks ) # Now overlay the NDWI image with the mask ndwi_image = ndwi_dataset.read(1) # Read the NDWI image (band 1) # Assign value 1 to NDWI where mask is 1 ndwi_image[mask_for_elevation_reprojected == 0] = 1 # Save the NDWI image locally as a GeoTIFF output_path = '/Users/joaopimenta/Desktop/GEE_test/reconstructed_plygon.tif' # Define the output path for the saved image # Retrieve the metadata from the NDWI dataset to use it for saving the file meta = ndwi_dataset.meta.copy() # Update metadata for a single band output meta.update({ 'dtype': 'float32', # or 'uint8' depending on the NDWI data type 'count': 1, # Number of bands 'driver': 'GTiff', # Save as a GeoTIFF file 'crs': ndwi_crs, # Coordinate reference system 'transform': ndwi_transform # Affine transform for georeferencing }) # Save the NDWI image with the mask applied as a GeoTIFF with rasterio.open(output_path, 'w', **meta) as dst: dst.write(ndwi_image.astype('float32'), 1) # Write the NDWI data to band 1 print(f'Saved NDWI image as {output_path}') # Create a figure with 2 subplots side by side fig, axes = plt.subplots(1, 2, figsize=(12, 6)) # 1 row, 2 columns # Plot the first contour: Identified contour (K-means method) on binary_ndwi contour_image_binary = np.zeros_like(binary_ndwi) contours_binary, _ = cv2.findContours(binary_ndwi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours_binary: cv2.drawContours(contour_image_binary, [max(contours_binary, key=cv2.contourArea)], -1, (255), 2) axes[0].imshow(contour_image_binary, cmap='gray') axes[0].set_title('Polygon of the NDWI affected by clouds') # Plot the second contour: Identified contour (K-means method) on ndwi_image contour_image_ndwi = np.zeros_like(ndwi_image) contours_ndwi, _ = cv2.findContours(ndwi_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours_ndwi: cv2.drawContours(contour_image_ndwi, [max(contours_ndwi, key=cv2.contourArea)], -1, (255), 2) axes[1].imshow(contour_image_ndwi, cmap='gray') axes[1].set_title('Polygon of the reconstructed Image') # Show the plots plt.tight_layout() plt.show() # Create contour image for binary NDWI contour_image_binary = np.zeros_like(binary_ndwi) contours_binary, _ = cv2.findContours(binary_ndwi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours_binary: cv2.drawContours(contour_image_binary, [max(contours_binary, key=cv2.contourArea)], -1, (255), 2) # Create contour image for NDWI image contour_image_ndwi = np.zeros_like(ndwi_image) contours_ndwi, _ = cv2.findContours(ndwi_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours_ndwi: # Draw only the largest contour for the NDWI image largest_contour = max(contours_ndwi, key=cv2.contourArea) cv2.drawContours(contour_image_ndwi, [max(contours_ndwi, key=cv2.contourArea)], -1, (255), 2) # Stack the binary contour and NDWI contour into a 3-channel image for overlay (Red, Green, Blue) overlay_image = np.zeros((contour_image_binary.shape[0], contour_image_binary.shape[1], 3), dtype=np.uint8) overlay_image[..., 0] = contour_image_binary # Red channel for binary NDWI contour overlay_image[..., 1] = contour_image_ndwi # Green channel for NDWI image contour # Create a mask to fill the inside of the largest NDWI contour mask = np.zeros_like(ndwi_image, dtype=np.uint8) if contours_ndwi: cv2.drawContours(mask, [largest_contour], -1, (255), thickness=cv2.FILLED) # Create a new output image, initialized to zeros (0 for a black image) output_image = np.zeros_like(ndwi_image, dtype=np.uint8) # Set the inside of the largest contour to one (255) output_image[mask == 255] = 1 # Change to fill with pixel value 1 # Optionally convert to uint8 range for visualization output_image *= 255 # If you need the output image to be in the 0-255 range # Save the NDWI image locally as a GeoTIFF output_path = '/Users/joaopimenta/Desktop/GEE_test/reconstructed_water_mask.tif' # Define the output path for the saved image # Retrieve the metadata from the NDWI dataset to use it for saving the file meta = ndwi_dataset.meta.copy() # Update metadata for a single band output meta.update({ 'dtype': 'float32', # or 'uint8' depending on the NDWI data type 'count': 1, # Number of bands 'driver': 'GTiff', # Save as a GeoTIFF file 'crs': ndwi_crs, # Coordinate reference system 'transform': ndwi_transform # Affine transform for georeferencing }) # Save the NDWI image with the mask applied as a GeoTIFF with rasterio.open(output_path, 'w', **meta) as dst: dst.write(output_image.astype('float32'), 1) # Write the NDWI data to band 1 print(f'Saved NDWI image as {output_path}') # If resolution is a tuple (x_resolution, y_resolution) x_resolution, y_resolution = resolution pixel_area = x_resolution * y_resolution # Area of one pixel in square meters # Count water pixels water_pixels = ndwi_image > 0 water_pixel_count = np.sum(water_pixels) # Calculate total water area total_water_area = water_pixel_count * pixel_area*1e8 # Print the result print(f'Total water area: {total_water_area} square meters') water_area_info.append(total_water_area) # Optionally, save the modified NDWI image as a new file out_meta = ndwi_dataset.meta.copy() with rasterio.open('ndwi_with_elevation_mask.tif', 'w', **out_meta) as dst: dst.write(ndwi_image, 1) # Write the new image to disk # Close datasets ndwi_dataset.close() else: print("There are no cloud pixels inside the reservoir's area.") water_area_info.append(waterarea) st.write(water_area_info) else: # Options for confirming the reservoir selection water_method = ['Fixed thershold', 'Dynamic'] # Select box to confirm selection water = st.selectbox("Choose this method of identifying water pixels", water_method) def extract_bbox_from_aoi(aoi): # Get the bounding box of the AOI bounds = aoi.bounds().getInfo() # Extract the coordinates based on the observed structure try: lon_min = bounds['coordinates'][0][0][0] # First point's longitude lat_min = bounds['coordinates'][0][0][1] # First point's latitude lon_max = bounds['coordinates'][0][2][0] # Third point's longitude lat_max = bounds['coordinates'][0][2][1] # Third point's latitude return lat_min, lon_min, lat_max, lon_max except (IndexError, KeyError, TypeError): print("Unexpected bounds structure:", bounds) raise ValueError("Unable to extract bounding box; check structure of bounds data.") lat_min, lon_min, lat_max, lon_max = extract_bbox_from_aoi(roi) # Function to query bridges def check_bridge_in_area(lat_min, lon_min, lat_max, lon_max): overpass_url = "http://overpass-api.de/api/interpreter" overpass_query = f""" [out:json]; ( way["man_made"="bridge"]({lat_min},{lon_min},{lat_max},{lon_max}); node(w); ); out body qt; """ print(f"Querying Overpass API with:\n{overpass_query}") response = requests.get(overpass_url, params={'data': overpass_query}) if response.status_code == 200: print("Received response from Overpass API.") return response.json() else: print(f"Error: {response.status_code}") return None # Query the Overpass API for bridges in the bounding box bridge_data = check_bridge_in_area(lat_min, lon_min, lat_max, lon_max) # Initialize lists for GeoDataFrame bridge_names = [] elem = None # Parse and display bridges with their shapes and names if bridge_data and 'elements' in bridge_data: node_coords = { # Store node coordinates for reference int(node['id']): (node['lat'], node['lon']) for node in bridge_data['elements'] if node['type'] == 'node' } if len(node_coords) > 0: print(f"Node coordinates found: {node_coords}") else: print("No node coordinates found.") for element in bridge_data['elements']: if element['type'] == 'way': elem = element['type'] bridge_name = element.get('tags', {}).get('name') if bridge_name: # Check if bridge has a name st.write(f"It was detected the bridge {bridge_name} inside the ROI") coords = [node_coords.get(node_id) for node_id in element.get('nodes', [])] coords = [coord for coord in coords if coord is not None] # Remove invalid coordinates else: st.write(f"Bridge ID: {element['id']} has no name and will be excluded.") else: st.write("No bridge data or 'elements' not in the response.") if water == 'Fixed thershold': # Define a function to calculate NDWI and mask for each image def calculate_ndwi_and_mask(image): ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI') ndwi_threshold = ndwi.gte(0.0) ndwi_mask = ndwi_threshold.updateMask(ndwi_threshold) return ndwi_mask # Map the function over the image collection to get NDWI masks for each image ndwi_masks = sentinelImageCollection.map(calculate_ndwi_and_mask) # Perform erosion (shrinking the mask slightly to remove small gaps and noise) eroded_ndwi = ndwi_masks.map(lambda img: img.focal_min(radius=1, kernelType='circle', iterations=1)) # Perform dilation after erosion (expanding the mask back to restore shape) closed_ndwi = eroded_ndwi.map(lambda img: img.focal_max(radius=1, kernelType='circle', iterations=1)) # Now, closed_ndwi contains the NDWI masks that have been eroded and then dilated for each image in the collection. # Define a function to calculate water area def calculate_water_area(image): water_area = image.multiply(ee.Image.pixelArea()).reduceRegion( reducer=ee.Reducer.sum(), geometry=roi, bestEffort=True, scale=5 ).get('NDWI') return image.set('water_area', water_area) if elem is not None: # Map the function over the NDWI masks to calculate water area for each image ndwi_masks_with_area = closed_ndwi.map(calculate_water_area) else: # Map the function over the NDWI masks to calculate water area for each image ndwi_masks_with_area = ndwi_masks.map(calculate_water_area) # Get the water area information water_area_info = ndwi_masks_with_area.aggregate_array('water_area').getInfo() # Display the list of water areas #st.write(water_area_info) # Get acquisition dates in human-readable format dates = ndwi_masks_with_area.aggregate_array('system:time_start') \ .map(lambda d: ee.Date(d).format('YYYY-MM-dd')).getInfo() # Display the dates #st.write("Acquisition dates for each image:", dates) # Alternatively, convert acquisition times to readable format (if needed) acquisition_times = sentinelImageCollection.aggregate_array('system:time_start').getInfo() acquisition_dates = [datetime.datetime.utcfromtimestamp(time / 1000).strftime('%Y-%m-%d') for time in acquisition_times] #st.write("Alternative acquisition dates:", acquisition_dates) else: # Define a function to calculate NDWI def calculate_ndwi(image): ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI') return image.addBands(ndwi) # Define a function to sample NDWI values for clustering def sample_ndwi(image): ndwi = image.select('NDWI') sampled_ndwi = ndwi.sample( region=roi_geometry, scale=10, numPixels=10000, seed=0 ).select('NDWI') return sampled_ndwi # Define a function to perform K-means clustering def cluster_ndwi(sampled_ndwi): clusterer = ee.Clusterer.wekaKMeans(2).train(sampled_ndwi) return clusterer # Define a function to determine the water cluster def get_water_cluster(clustered_image): mean_ndwi_per_cluster = clustered_image.reduceRegion( reducer=ee.Reducer.mean(), geometry=roi_geometry, scale=10 ) mean_values = ee.List(mean_ndwi_per_cluster.values()) water_cluster = mean_values.indexOf(mean_values.reduce(ee.Reducer.max())) return water_cluster # Define a function to create a binary water mask based on the cluster def create_water_mask(clustered_image, water_cluster): water_mask = clustered_image.eq(water_cluster).rename('water_mask') return water_mask # Define a function to compute the area of water bodies in square meters def compute_water_area(water_mask): water_area = water_mask.reduceRegion( reducer=ee.Reducer.sum(), geometry=roi_geometry, scale=10 ).get('water_mask') water_area = ee.Number(water_area).multiply(100).divide(1e4) # Convert to square kilometers return water_area if elem is not None: # Combine all functions into one for mapping def process_image(image): # Calculate NDWI image = calculate_ndwi(image) # Sample and cluster NDWI for water detection sampled_ndwi = sample_ndwi(image) clusterer = cluster_ndwi(sampled_ndwi) clustered_image = image.select('NDWI').cluster(clusterer).rename('cluster') # Determine which cluster represents water water_cluster = get_water_cluster(clustered_image) water_mask = create_water_mask(clustered_image, water_cluster) # Perform morphological operations (closing) eroded_ndwi = water_mask.focal_min(radius=1, kernelType='circle', iterations=1) closed_ndwi = eroded_ndwi.focal_max(radius=1, kernelType='circle', iterations=1) water_area = compute_water_area(closed_ndwi) return image.set('water_area_km2', water_area) else: # Combine all functions into one for mapping def process_image(image): image = calculate_ndwi(image) sampled_ndwi = sample_ndwi(image) clusterer = cluster_ndwi(sampled_ndwi) clustered_image = image.select('NDWI').cluster(clusterer).rename('cluster') water_cluster = get_water_cluster(clustered_image) water_mask = create_water_mask(clustered_image, water_cluster) water_area = compute_water_area(water_mask) return image.set('water_area_km2', water_area) # Apply the processing function to each image in the collection processed_images = sentinelImageCollection.map(process_image) # Extract the water area and date information water_area_info = processed_images.aggregate_array('water_area_km2').getInfo() dates = processed_images.aggregate_array('system:time_start').map(lambda d: ee.Date(d).format('YYYY-MM-dd')).getInfo() # Get acquisition times of the images acquisition_times = sentinelImageCollection.aggregate_array('system:time_start').getInfo() # Convert acquisition times to human-readable dates acquisition_dates = [datetime.datetime.utcfromtimestamp(time / 1000).strftime('%Y-%m-%d') for time in acquisition_times] if method == ("Write the A-V function of your reservoir"): for area in water_area_info: volume = None # Calculate the volume using the area-storage equation volume = (area / a) ** (1 / b) if volume is not None: volumes.append(volume) else: st.write("Error with the coefficients") st.write(f"The list of the volumes in cubic meters for the chosen dates is: {volumes}") elif method == ("upload excel sheet"): if dictionary: for area in water_area_info: volume = None keys = sorted(dictionary.keys()) for i in range(len(keys)): key = keys[i] if key >= area: if i == 0: volume = dictionary[key] st.write(f"This is the volume {volume/10**6}km³") volumes.append(volume) else: prev_key = keys[i - 1] delta_volume = dictionary[key] - dictionary[prev_key] delta_key = key - prev_key delta_area = area - prev_key interpolated_volume = dictionary[prev_key] + (delta_volume * delta_area / delta_key) volume = (interpolated_volume/10**6) st.write(f"This is the volume {volume}km³") volumes.append(volume) break else: # This else block belongs to the for loop, not the if condition st.write("Dam value not found in the dictionary ") elif method == ("upload the DEM"): if dictionary: for area in water_area_info: volume = None keys = sorted(dictionary.keys()) for i in range(len(keys)): key = keys[i] if key >= area: if i == 0: volume = dictionary[key] st.write(f"This is the volume {volume/10**6}km³") volumes.append(volume) else: prev_key = keys[i - 1] delta_volume = dictionary[key] - dictionary[prev_key] delta_key = key - prev_key delta_area = area - prev_key interpolated_volume = dictionary[prev_key] + (delta_volume * delta_area / delta_key) volume = (interpolated_volume/10**6) st.write(f"This is the volume {volume}km³") volumes.append(volume) break else: # This else block belongs to the for loop, not the if condition st.write("Dam value not found in the dictionary ") elif method == "Don't have that info": import netCDF4 as nc import numpy as np volumes =[] # Open the NetCDF file nc_file = nc.Dataset('/Users/joaopimenta/Downloads/Master thesis/GLOBathy_hAV_relationships.nc') # Specify the lake ID you want to search for target_lake_id = hydrolakes_id # Replace this with the actual lake ID you're interested in # Find the index of the lake based on the lake ID lake_ids = nc_file.variables['lake_id'][:] # Check if the target lake ID exists in the lake_id variable lake_index = np.where(lake_ids == target_lake_id)[0] if len(lake_index) == 0: st.write("Lake not found in the dataset.") else: lake_index = lake_index[0] # Use the first match if found # Extract coefficients of the area-storage equation for the identified lake area_storage_coeffs = nc_file.variables['f_hA'][lake_index, :] lon_lat = nc_file.variables['lon_lat'][lake_index, :] # Print the lake's ID, coordinates, and area-storage equation coefficients st.write("Coordinates (Lon, Lat):", lon_lat) # Print the coefficients st.write("Area-Storage equation coefficients:") st.write("a:", area_storage_coeffs[0]) st.write("b:", area_storage_coeffs[1]) st.write("R^2:", area_storage_coeffs[2]) import numpy as np for area in water_area_info: # Coefficients obtained from the NetCDF dataset a = area_storage_coeffs[0] b = area_storage_coeffs[1] # Calculate the volume using the area-storage equation volume = ((area/1e6) / a) ** (1 / b) volumes.append(volume) from io import BytesIO # Function to generate the sample data DataFrame def generate_sample_data(): date = acquisition_dates area = water_area_info vol = volumes return pd.DataFrame({'Date': date, 'Volume (10⁸m³)': vol, 'Area (km²)': area }) # Generate the sample data DataFrame df = generate_sample_data() # Save the DataFrame to an Excel file in memory excel_buffer = BytesIO() import pandas as pd import io # Assuming excel_buffer and output, area_storage_coeffs are defined elsewhere in your code excel_buffer = io.BytesIO() # Use a single `ExcelWriter` for writing all sheets with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer: # Check if 'Water Surface Elevation' is in output and write relevant data if 'Water Surface Elevation' in output: # Convert date to timezone-unaware if necessary elevation_dates = pd.to_datetime(df_filtered['time_str']).dt.tz_localize(None) elevations = df_filtered['wse'] df_2 = pd.DataFrame({'Date': elevation_dates, 'Water Surface Elevations': elevations}) df_2.to_excel(writer, sheet_name='Elevations Data', index=False) # Check if 'Storage-Capacity curve' is in output and write relevant data if 'Storage-Capacity curve' in output: # Assume `area_storage_coeffs` contains appropriate data in tuple or list format df_3 = pd.DataFrame({ 'a': [area_storage_coeffs[0]], 'b': [area_storage_coeffs[1]], 'R^2': [area_storage_coeffs[2]] }) df_3.to_excel(writer, sheet_name='Storage_capacity_curve', index=False) # Assuming `df` is a base DataFrame you want to write to a default sheet df.to_excel(writer, sheet_name='Reservoir Data', index=False) # Reset buffer position to the start for reading/download excel_buffer.seek(0) # Create a download button for the Excel file st.download_button( label="Download Excel file", data=excel_buffer, file_name="reservoir_data.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ) st.write("Click the button above to download the data as an Excel file.") import tempfile # Load the bathymetry dataset from Earth Engine globathy = ee.Image("projects/sat-io/open-datasets/GLOBathy/GLOBathy_bathymetry") # Define the function to export the image and return the path def export_image_for_download(image, roi, scale=10): # Use a temporary directory for saving the file with tempfile.NamedTemporaryFile(delete=False, suffix=".tif") as temp_file: out_image_path = temp_file.name geemap.ee_export_image(image, filename=out_image_path, scale=scale, region=roi) return out_image_path if 'Bathymetry file' in output: # Call the function and set up the download button if st.button("Download Image"): # Assuming `globathy` is your Earth Engine image and `roi` is the region of interest image_path = export_image_for_download(globathy, roi) # Read the file as bytes for download with open(image_path, "rb") as file: file_bytes = file.read() st.download_button( label="Click here to download the image", data=file_bytes, file_name="exported_image.tif", mime="image/tiff" ) # Display the bar charts col1, col2= st.columns([7,3]) # Combine acquisition dates and volumes into a list of tuples with col1: import pandas as pd import altair as alt # Function to generate sample data def generate_sample_data(): date = acquisition_dates vol= volumes return pd.DataFrame({'Date': date, 'Volume': vol}) # Sample data df = generate_sample_data() if 'Water Surface Elevation' in output: st.subheader("WSE over the chosen date range") # Convert 'time_str' to timezone-unaware and set up DataFrame for plotting elevation_dates = pd.to_datetime(df_filtered['time_str']).dt.tz_localize(None) elevations = df_filtered['wse'] df_wse = pd.DataFrame({'Date': elevation_dates, 'Water Surface Elevations': elevations}) # Create the line chart for water surface elevations wse_chart = alt.Chart(df_wse).mark_line( color='#00FFFF' ).encode( x=alt.X('Date:T', title='Date'), y=alt.Y('Water Surface Elevations:Q', title='Water Surface Elevation (m)') ) # Display the WSE chart in Streamlit st.altair_chart(wse_chart, use_container_width=True) st.subheader("Volume over the chosen date range") # Ensure that 'Date' and 'Volume' columns are available in df volume_chart = alt.Chart(df).mark_line( color='#00FFFF' ).encode( x=alt.X('Date:T', title='Date'), y=alt.Y('Volume:Q', title='Volume (10⁶ m³)',scale=alt.Scale(zero=False)) ) # Display the volume chart in Streamlit st.altair_chart(volume_chart, use_container_width=True) with col2: import pandas as pd # Donut chart function def make_donut(input_response, input_text, input_color): if input_color == 'green': chart_color = ['#27AE60', '#12783D'] elif input_color == 'red': chart_color = ['#E74C3C', '#781F16'] elif input_color == 'yellow': chart_color = ['#FFFF00', '#FFD700'] # Yellow colors elif input_color == 'orange': chart_color = ['#FFA500', '#FF4500'] # Orange colors elif input_color == 'light green': chart_color = ['#90EE90', '#006400'] # Light green colors else: raise ValueError("Invalid color. Please choose either 'green' or 'red'.") source = pd.DataFrame({ "Topic": ['', input_text], "% value": [100-input_response, input_response] }) source_bg = pd.DataFrame({ "Topic": ['', input_text], "% value": [100, 0] }) plot = alt.Chart(source).mark_arc(innerRadius=45, cornerRadius=25).encode( theta="% value", color=alt.Color("Topic:N", scale=alt.Scale( domain=[input_text, ''], range=chart_color), legend=None), ).properties(width=130, height=130) text = plot.mark_text(align='center', color=chart_color[0], font="sans-serif", fontSize=20, fontWeight=500, fontStyle="italic").encode(text=alt.value(f'{input_response} %')) plot_bg = alt.Chart(source_bg).mark_arc(innerRadius=45, cornerRadius=20).encode( theta="% value", color=alt.Color("Topic:N", scale=alt.Scale( domain=[input_text, ''], range=chart_color), # 31333F legend=None), ).properties(width=130, height=130) return plot_bg + plot + text def get_color(value): """Helper function to determine the color based on percentage.""" if value < 25: return 'red' elif 25 <= value < 50: return 'orange' elif value == 50: return 'yellow' elif 50 < value < 75: return 'light green' else: return 'green' # Check if storage is not None, not an empty string, and can be converted to a float if Vol_res is not None: try: storage_float = Vol_res/10 if storage_float > 0: total_volume = storage_float worst = (min(volumes) / total_volume) * 100 best = (max(volumes) / total_volume) * 100 # Colors for worst and best day wrst_color = get_color(worst) bst_color = get_color(best) # Display donut charts st.subheader("Lower storage") st.altair_chart(make_donut(round(worst, 2), 'Worst day', wrst_color), use_container_width=True) st.subheader("Higher storage") st.altair_chart(make_donut(round(best, 2), 'Best day', bst_color), use_container_width=True) except ValueError: st.write("Invalid storage value; cannot convert to float.") # Fallback if storage is invalid or not provided, and ref_area is available elif properties and ref_area is not None: ref_area_float = (float(ref_area)*1e6) worst = (min(water_area_info) / ref_area_float) * 100 best = (max(water_area_info) / ref_area_float) * 100 # Colors for worst and best day wrst_color = get_color(worst) bst_color = get_color(best) # Display fallback donut charts st.subheader("Lower storage") st.altair_chart(make_donut(round(worst, 2), 'Worst day', wrst_color), use_container_width=True) st.subheader(" Higher storage") st.altair_chart(make_donut(round(best, 2), 'Best day', bst_color), use_container_width=True) def calculate_max_percentage_variation(volumes, acquisition_dates): max_variation = 0 max_variation_index = None for i in range(1, len(volumes)): # Calculate percentage variation percentage_variation = abs((volumes[i] - volumes[i - 1]) / volumes[i - 1]) * 100 # Update max variation and index if current variation is greater if percentage_variation > max_variation: max_variation = percentage_variation max_variation_index = i - 1 # Store index of the first date in the pair # Get the dates corresponding to the max variation date1 = acquisition_dates[max_variation_index] date2 = acquisition_dates[max_variation_index + 1] return max_variation, date1, date2 max_variation, date1, date2 = calculate_max_percentage_variation(volumes, acquisition_dates) import statistics std_dev = round(statistics.stdev(volumes),2) mean_vol = round(statistics.mean(volumes),2) mean_area = round(statistics.mean(water_area_info),2) max_variation_area, date1, date2 = calculate_max_percentage_variation(water_area_info, acquisition_dates) #st.write(" The greates variation occured between:", date1, "and", date2) if max_variation >=0: delta = 1 else: delta = -1 max_area = max(water_area_info) max_volume = max(volumes) current_volume = round(volumes[-1],2) current_area = round(water_area_info[-1],2) #create column span col1, col2, col3 = st.columns(3) #Customize metric style to have white text color metric_style = "color: black;" col1.metric(label="Max variation", value="%" + " " + f"{max_variation:,.2f}", delta=delta) col2.metric(label="Mean area", value="km²" + " " + f"{mean_area/1e6:,.2f}", delta=round(max_variation_area,2)) col3.metric(label="standard deviation", value = "km³ " + " " + f"{std_dev:,.2f}") st.write(" The greates variation occured between:", date1, "and", date2) # Create a select box for asking ChatGPT about this reservoir opt = ["No","Yes"] info = st.selectbox( f"Ask ChatGPT more information about this lake {lake_name}", opt, key="info") if info == "Yes": import streamlit as st from openai import OpenAI # Define the reservoir information retrieval function def get_reservoir_info(lake_name, country, lng, lat): client = OpenAI(api_key="sk-proj-uK1IbwMXiNImV7RFDxr3T3BlbkFJXjBzHIIJYRoQbiJE6Kc5") prompt = ( f"Provide detailed information about the dam/reservoir {lake_name}, " f"located in {country}, with coordinates (longitude: {lng}, latitude: {lat}). " f"Use short sentences and split the response into concise, clear lines." f"Specify the type of use of that reservoir or lake and when it wast built. " ) stream = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], stream=True, ) response_content = "" for chunk in stream: if chunk.choices[0].delta.content is not None: response_content += chunk.choices[0].delta.content return response_content st.subheader(f"Information about the reservoir {lake_name}") info_text = get_reservoir_info(lake_name, Country, lng, lat) # Displaying the information with line breaks for line in info_text.split(". "): # Split into sentences st.text(line.strip() + ".") else: st.write("Please select the date range and cloud coverage thershold for the analysis.") else: st.write("Please search on the map the lake you want to analyse and click on it to select it") elif page =="About": from PIL import Image # For handling images # Load images satellite_image = Image.open("/Users/joaopimenta/Desktop/images thesis and figures/Captura de ecrã 2024-08-29, às 18.17.19.png") workflow_diagram = Image.open("/Users/joaopimenta/Downloads/image-Photoroom.png") reservoir_map = Image.open("/Users/joaopimenta/Desktop/images thesis and figures/Captura de ecrã 2024-08-30, às 00.43.24.png") worflow_image = Image.open("/Users/joaopimenta/Desktop/SCR-20241218-bmyx.png") #comparison_graph = Image.open("images/comparison_graph.jpg") #future_advancements = Image.open("images/future_advancements.jpg") # Path to your video file st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown(" ") st.markdown( """ """, unsafe_allow_html=True ) # Content with the "about-text" class for styling st.markdown( """

About the Research

Efficient management of water reservoirs is essential for water security, flood control, and hydroelectric power generation. Traditional methods of evaluating reservoir volumes depend on in-situ measurements and physical surveys, which are often time-consuming, resource-intensive, and impractical for many regions due to financial and logistical limitations.

To address these challenges, this research introduces a novel remote sensing tool designed to provide an accurate, scalable, and globally accessible method for reservoir volume evaluation. The tool integrates high-resolution Sentinel-2 satellite imagery with geospatial analysis techniques and machine learning algorithms to automatically calculate inundated areas and reservoir water storage.

This problem is both significant and complex. Reservoir volume measurements are critical for effective water resource management, yet current methodologies struggle to scale for large or remote areas due to high costs. Furthermore, environmental factors such as cloud cover and human-made structures, like bridges, can interfere with satellite imagery, presenting additional challenges for large-scale remote sensing. By employing the algorithms developed in this study, the proposed tool overcomes these barriers, delivering flexible and reliable estimates of reservoir volumes.

The solution was tested on reservoirs in Portugal and California, USA, achieving high accuracy. Results showed an average mean absolute percentage error of 5.35% and an average correlation coefficient () of 0.90 when compared to published data obtained through traditional methods.

This software includes a free demo version designed to allow users to test the tool, with continuous improvements planned. Currently, it utilizes a sample of polygons from the SWOT lakes database, covering 93% of all lakes across Europe. Over time, the database will be expanded, incorporating additional data, while also optimizing the website's RAM usage.

Beyond the current promising results, this research opens pathways for future enhancements. These include:

""", unsafe_allow_html=True ) col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.image(worflow_image, caption="App description", width=700) st.markdown( """

About This Application

Revolutionizing Water Resource Management

The Reservoir Volume Monitoring Application is a cutting-edge tool designed to address global challenges in water management, flood prevention, and hydroelectric power optimization. By leveraging high-resolution satellite imagery from Sentinel-2 and advanced geospatial analysis, the app automates the estimation of reservoir volumes, delivering accurate, efficient, and globally scalable solutions.This software includes a free demo version designed to allow users to test the tool, with continuous improvements planned. Currently, it utilizes a sample of polygons from the SWOT lakes database, covering 93% of all lakes across Europe. Over time, the database will be expanded, incorporating additional data, while also optimizing the website's RAM usage.

""", unsafe_allow_html=True ) # Image in the middle column col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.image(satellite_image, caption="Sentinel-2 satellite image of a large reservoir", width=700,) st.markdown( """

How It Works

This application simplifies complex workflows into an intuitive and automated process. Users start by selecting a Region of Interest (ROI) using an interactive map or by uploading geojson files. Satellite imagery for the specified area and date range is automatically retrieved and preprocessed. Advanced algorithms remove interferences such as clouds, shadows, or structural obstacles like bridges. The app applies indices such as NDWI (Normalized Difference Water Index) to classify water pixels and calculate inundated areas. For reservoirs affected by cloud cover, bathymetric data from global databases like GLOBathy is used to reconstruct accurate water surfaces. Finally, volumes are calculated using area-volume relationships derived from either existing databases or user-provided data. The results are visualized through dynamic charts, maps, and downloadable reports, providing users with actionable insights.

""", unsafe_allow_html=True ) col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.image(workflow_diagram, caption="Workflow of the app: From data acquisition to volume estimation", width=700) st.markdown( """

Why It Matters

Reservoirs are crucial for ensuring water security, supporting agriculture, producing hydroelectric power, and maintaining ecological balance. However, many regions lack efficient monitoring tools, leading to water mismanagement and heightened risks of droughts, floods, and ecological disruption. This application bridges the gap by offering a globally accessible solution that requires no physical infrastructure. Its scalability enables it to monitor reservoirs of all sizes, from local irrigation ponds to massive hydroelectric reservoirs. With an accuracy of 94.65%, tested on reservoirs in Portugal and California, the app provides reliable data to support decision-making in water management, flood risk mitigation, and ecosystem preservation.

""", unsafe_allow_html=True ) st.markdown( """

Key Benefits

The application offers a robust yet user-friendly platform that integrates cutting-edge technology into a seamless user experience. Built with Python and the Streamlit framework, it provides: • Automated Image Processing: Reduces manual effort by leveraging advanced algorithms for water surface detection and volume calculation. • Accurate Data Insights: Achieves a mean absolute percentage error of just 5.35%. • Global Scalability: Access anywhere, monitor reservoirs of all sizes, and ensure reliable data even in remote areas. • Environmental Sustainability: Supports efficient water use and better management of natural resources.

""", unsafe_allow_html=True ) col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.image(reservoir_map, caption="Tested reservoirs in Portugal and California", width=700) st.markdown( """

The Future of Reservoir Monitoring

The application is poised for future enhancements, including integration with new satellite missions like SWOT (Surface Water and Ocean Topography), predictive modeling using LSTM algorithms, and expanded compatibility with emerging geospatial technologies. With its scalable and adaptable design, this tool is set to become an indispensable resource for water resource management professionals, researchers, and environmental advocates.

""", unsafe_allow_html=True ) # Contact Section st.header("Contact Me") # Creating three columns col1, col2, col3 = st.columns([1, 2, 1]) # Place email in the first column with col1: st.markdown( """ **Email:** [joaopedromateusp@gmail.com](mailto:joaopedromateusp@gmail.com) """, unsafe_allow_html=True ) # Place GitHub link in the second (middle) column with col2: st.markdown( """ **GitHub:** [github.com/yourusername](https://github.com/yourusername) """, unsafe_allow_html=True ) # Place LinkedIn link in the third column with col3: st.markdown( """ **LinkedIn:** [www.linkedin.com/in/joão-pimenta-mp](www.linkedin.com/in/joão-pimenta-mp) """, unsafe_allow_html=True ) elif page =="Tutorial": st.markdown(""" # Tutorial: Analyzing Satellite Imagery and Calculating Reservoir Volumes Welcome to the tutorial for your app, which automates the process of analyzing satellite imagery and calculating the area and volume of reservoirs. This guide will walk you through the steps to use the app effectively. --- ## Step 1: Define the Region of Interest (ROI) 1. **Set the Region of Interest (ROI)** Start by defining the Region of Interest (ROI), which is the geographic area you want to analyze. You can specify this by selecting coordinates or using a map interface to draw a boundary around the reservoir. **Tip:** You can zoom in and adjust the shape of the ROI for more precise selection. --- ## Step 2: Define the Date Range 1. **Select the Date Range** The next step is to choose a date range for the analysis. You can use the calendar interface within the app to select the start and end dates for the period you wish to analyze. The app will automatically filter available satellite imagery based on the selected date range and cloud coverage. ### Cloud Coverage Percentage Filter: The app will display images for the chosen date range and allow you to choose the maximum acceptable percentage of cloud coverage for the images. **Tip:** To ensure clear images, select a lower cloud coverage threshold (e.g., less than 10%). --- ## Step 3: Confirm the Reservoir Selection 1. **Select the Reservoir** After defining the ROI and setting the date range, the app will retrieve satellite imagery for the region. You will be shown a list of possible reservoirs within the selected area. Review the options and confirm the specific reservoir you want to analyze. **Tip:** If the app detects multiple water bodies, it will present thumbnails or maps to help you identify the correct reservoir. --- ## Step 4: Choose the Cloud Coverage Percentage 1. **Choose Cloud Coverage Threshold** You will now select the cloud coverage threshold. The app will show you images with varying levels of cloud coverage. You can choose a cloud coverage percentage that meets your needs (e.g., less than 10%, 20%, etc.). **Tip:** For more accurate results, choose a threshold that minimizes the impact of cloud cover on your analysis. --- ## Step 5: Choose the Output Variables 1. **Select Output Variables** Now, you can choose the specific variables you want the app to calculate for the reservoir. These may include: - Water Area - Volume - Time Series Data for Volume - Bathymetric Information **Tip:** Select the variables you are most interested in, such as volume or changes over time. --- ## Step 6: Press the "Start" Button 1. **Start the Analysis** Once all parameters have been defined (date range, reservoir selection, cloud coverage, and output variables), you can initiate the analysis by pressing the **"Start"** button. The app will begin processing the satellite imagery, applying necessary corrections, and performing calculations to estimate the reservoir's water area and volume. **Tip:** Depending on the data size, the process may take a few minutes. You’ll see a progress indicator during this time. --- ## Step 7: View and Export Results 1. **View Results** Once the analysis is complete, you can view the results directly within the app. The app will display visualizations of the water area and provide calculated volume data for the reservoir. 2. **Export Data** You can export the analysis results in CSV, Excel, or other formats for further analysis or reporting. Simply click the "Export" button to download the data. --- ## Notes 1. **Fill the parameters** In order for the software to compute the water analysis all the paremeters must have been adressed 2. **Statistics** Note that 'higher percentage' and 'lower percentage' values are calulated based on the maxiumum and minum water volume value from the calculated time series comparing with the maximum water volume present on the SWOT lakes database for that specific reservoir --- ## Conclusion By following these steps, you can efficiently analyze satellite imagery and calculate reservoir volumes using the app. The methodology ensures accurate results with cloud coverage filtering, error checking, and reliable bathymetric analysis. If you encounter any issues or need further assistance, refer to the help section within the app or contact support. """) video_file = open('/Users/joaopimenta/Desktop/Gravação do ecrã 2024-11-08, às 00.40.22.mov', "rb") video_bytes = video_file.read() st.video(video_bytes) # For handling images