Spaces:
Running
Running
Update st_app.py
Browse files
st_app.py
CHANGED
@@ -3,24 +3,13 @@ import sys
|
|
3 |
import re
|
4 |
|
5 |
import streamlit as st
|
6 |
-
from streamlit_pills import pills
|
7 |
-
from streamlit_feedback import streamlit_feedback
|
8 |
-
|
9 |
-
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
|
10 |
|
11 |
from vectara_agentic.agent import AgentStatusType
|
12 |
-
from agent import initialize_agent
|
|
|
13 |
|
14 |
initial_prompt = "How can I help you today?"
|
15 |
|
16 |
-
def show_example_questions():
|
17 |
-
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
|
18 |
-
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
|
19 |
-
if selected_example:
|
20 |
-
st.session_state.ex_prompt = selected_example
|
21 |
-
st.session_state.first_turn = False
|
22 |
-
return True
|
23 |
-
return False
|
24 |
|
25 |
def format_log_msg(log_msg: str):
|
26 |
max_log_msg_size = 500
|
@@ -68,50 +57,19 @@ async def launch_bot():
|
|
68 |
cfg = get_agent_config()
|
69 |
st.session_state.cfg = cfg
|
70 |
st.session_state.ex_prompt = None
|
71 |
-
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
|
72 |
-
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
|
73 |
reset()
|
74 |
|
75 |
cfg = st.session_state.cfg
|
|
|
76 |
|
77 |
# left side content
|
78 |
-
with st.sidebar:
|
79 |
-
image = Image.open('Vectara-logo.png')
|
80 |
-
st.image(image, width=175)
|
81 |
-
st.markdown(f"## {cfg['demo_welcome']}")
|
82 |
-
st.markdown(f"{cfg['demo_description']}")
|
83 |
-
|
84 |
-
st.markdown("\n\n")
|
85 |
-
bc1, bc2 = st.columns([1, 1])
|
86 |
-
with bc1:
|
87 |
-
if st.button('Start Over'):
|
88 |
-
reset()
|
89 |
-
st.rerun()
|
90 |
-
with bc2:
|
91 |
-
if st.button('Show Logs'):
|
92 |
-
show_modal()
|
93 |
-
|
94 |
-
st.divider()
|
95 |
-
st.markdown(
|
96 |
-
"## How this works?\n"
|
97 |
-
"This app was built with [Vectara](https://vectara.com).\n\n"
|
98 |
-
"It demonstrates the use of Agentic RAG functionality with Vectara"
|
99 |
-
)
|
100 |
-
|
101 |
-
if "messages" not in st.session_state.keys():
|
102 |
-
reset()
|
103 |
|
104 |
# Display chat messages
|
105 |
for message in st.session_state.messages:
|
|
|
106 |
with st.chat_message(message["role"], avatar=message["avatar"]):
|
107 |
st.write(message["content"])
|
108 |
|
109 |
-
example_container = st.empty()
|
110 |
-
with example_container:
|
111 |
-
if show_example_questions():
|
112 |
-
example_container.empty()
|
113 |
-
st.session_state.first_turn = False
|
114 |
-
st.rerun()
|
115 |
|
116 |
# User-provided prompt
|
117 |
if st.session_state.ex_prompt:
|
@@ -133,32 +91,16 @@ async def launch_bot():
|
|
133 |
with st.chat_message("assistant", avatar='🤖'):
|
134 |
st.session_state.status = st.status('Processing...', expanded=False)
|
135 |
res = st.session_state.agent.chat(st.session_state.prompt)
|
136 |
-
res = escape_dollars_outside_latex(res)
|
|
|
137 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
138 |
st.session_state.messages.append(message)
|
139 |
st.markdown(res)
|
140 |
|
141 |
-
send_amplitude_data(
|
142 |
-
user_query=st.session_state.messages[-2]["content"],
|
143 |
-
bot_response=st.session_state.messages[-1]["content"],
|
144 |
-
demo_name=cfg['demo_name']
|
145 |
-
)
|
146 |
|
147 |
st.session_state.ex_prompt = None
|
148 |
st.session_state.prompt = None
|
149 |
st.session_state.first_turn = False
|
150 |
st.rerun()
|
151 |
|
152 |
-
|
153 |
-
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
|
154 |
-
if "feedback_key" not in st.session_state:
|
155 |
-
st.session_state.feedback_key = 0
|
156 |
-
streamlit_feedback(
|
157 |
-
feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key),
|
158 |
-
kwargs={"user_query": st.session_state.messages[-2]["content"],
|
159 |
-
"bot_response": st.session_state.messages[-1]["content"],
|
160 |
-
"demo_name": cfg["demo_name"]}
|
161 |
-
)
|
162 |
-
|
163 |
-
|
164 |
-
sys.stdout.flush()
|
|
|
3 |
import re
|
4 |
|
5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from vectara_agentic.agent import AgentStatusType
|
8 |
+
from agent import initialize_agent
|
9 |
+
from config import get_agent_config
|
10 |
|
11 |
initial_prompt = "How can I help you today?"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def format_log_msg(log_msg: str):
|
15 |
max_log_msg_size = 500
|
|
|
57 |
cfg = get_agent_config()
|
58 |
st.session_state.cfg = cfg
|
59 |
st.session_state.ex_prompt = None
|
|
|
|
|
60 |
reset()
|
61 |
|
62 |
cfg = st.session_state.cfg
|
63 |
+
print(f'Configuration: {cfg}')
|
64 |
|
65 |
# left side content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Display chat messages
|
68 |
for message in st.session_state.messages:
|
69 |
+
print(f'Message: {message}')
|
70 |
with st.chat_message(message["role"], avatar=message["avatar"]):
|
71 |
st.write(message["content"])
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# User-provided prompt
|
75 |
if st.session_state.ex_prompt:
|
|
|
91 |
with st.chat_message("assistant", avatar='🤖'):
|
92 |
st.session_state.status = st.status('Processing...', expanded=False)
|
93 |
res = st.session_state.agent.chat(st.session_state.prompt)
|
94 |
+
#res = escape_dollars_outside_latex(res)
|
95 |
+
res = str(res)
|
96 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
97 |
st.session_state.messages.append(message)
|
98 |
st.markdown(res)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
st.session_state.ex_prompt = None
|
102 |
st.session_state.prompt = None
|
103 |
st.session_state.first_turn = False
|
104 |
st.rerun()
|
105 |
|
106 |
+
sys.stdout.flush()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|