Spaces:
Running
Running
updates
Browse files
agent.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
load_dotenv(override=True)
|
10 |
+
|
11 |
+
from pydantic import Field, BaseModel
|
12 |
+
from vectara_agent.agent import Agent, AgentStatusType
|
13 |
+
from vectara_agent.tools import ToolsFactory, VectaraToolFactory
|
14 |
+
|
15 |
+
tickers = {
|
16 |
+
"AAPL": "Apple Computer",
|
17 |
+
"GOOG": "Google",
|
18 |
+
"AMZN": "Amazon",
|
19 |
+
"SNOW": "Snowflake",
|
20 |
+
"TEAM": "Atlassian",
|
21 |
+
"TSLA": "Tesla",
|
22 |
+
"NVDA": "Nvidia",
|
23 |
+
"MSFT": "Microsoft",
|
24 |
+
"AMD": "Advanced Micro Devices",
|
25 |
+
"INTC": "Intel",
|
26 |
+
"NFLX": "Netflix",
|
27 |
+
}
|
28 |
+
years = [2020, 2021, 2022, 2023, 2024]
|
29 |
+
initial_prompt = "How can I help you today?"
|
30 |
+
|
31 |
+
def create_assistant_tools(cfg):
|
32 |
+
|
33 |
+
def get_company_info() -> list[str]:
|
34 |
+
"""
|
35 |
+
Returns a dictionary of companies you can query about. Always check this before using any other tool.
|
36 |
+
The output is a dictionary of valid ticker symbols mapped to company names.
|
37 |
+
You can use this to identify the companies you can query about, and their ticker information.
|
38 |
+
"""
|
39 |
+
return tickers
|
40 |
+
|
41 |
+
def get_valid_years() -> list[str]:
|
42 |
+
"""
|
43 |
+
Returns a list of the years for which financial reports are available.
|
44 |
+
Always check this before using any other tool.
|
45 |
+
"""
|
46 |
+
return years
|
47 |
+
|
48 |
+
# Tool to get the income statement for a given company and year using the FMP API
|
49 |
+
def get_income_statement(
|
50 |
+
ticker=Field(description="the ticker symbol of the company."),
|
51 |
+
year=Field(description="the year for which to get the income statement."),
|
52 |
+
) -> str:
|
53 |
+
"""
|
54 |
+
Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
|
55 |
+
Returns a dictionary with the income statement data. All data is in USD, but you can convert it to more compact form like K, M, B.
|
56 |
+
"""
|
57 |
+
fmp_api_key = os.environ.get("FMP_API_KEY", None)
|
58 |
+
if fmp_api_key is None:
|
59 |
+
return "FMP_API_KEY environment variable not set. This tool does not work."
|
60 |
+
url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
|
61 |
+
response = requests.get(url)
|
62 |
+
if response.status_code == 200:
|
63 |
+
data = response.json()
|
64 |
+
income_statement = pd.DataFrame(data)
|
65 |
+
income_statement["date"] = pd.to_datetime(income_statement["date"])
|
66 |
+
income_statement_specific_year = income_statement[
|
67 |
+
income_statement["date"].dt.year == int(year)
|
68 |
+
]
|
69 |
+
values_dict = income_statement_specific_year.to_dict(orient="records")[0]
|
70 |
+
return f"Financial results: {', '.join([f'{key}: {value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
|
71 |
+
else:
|
72 |
+
return "FMP API returned error. This tool does not work."
|
73 |
+
|
74 |
+
class QueryTranscriptsArgs(BaseModel):
|
75 |
+
query: str = Field(..., description="The user query.")
|
76 |
+
year: int = Field(..., description=f"The year. An integer between {min(years)} and {max(years)}.")
|
77 |
+
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
|
78 |
+
|
79 |
+
vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key,
|
80 |
+
vectara_customer_id=cfg.customer_id,
|
81 |
+
vectara_corpus_id=cfg.corpus_id)
|
82 |
+
tools_factory = ToolsFactory()
|
83 |
+
|
84 |
+
ask_transcripts = vec_factory.create_rag_tool(
|
85 |
+
tool_name = "ask_transcripts",
|
86 |
+
tool_description = """
|
87 |
+
Given a company name and year, responds to a user question about the company, based on analyst call transcripts about the company's financial reports for that year.
|
88 |
+
You can ask this tool any question about the compaany including risks, opportunities, financial performance, competitors and more.
|
89 |
+
""",
|
90 |
+
tool_args_schema = QueryTranscriptsArgs,
|
91 |
+
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
92 |
+
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
93 |
+
summary_num_results = 10,
|
94 |
+
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
|
95 |
+
include_citations = False,
|
96 |
+
)
|
97 |
+
|
98 |
+
return (
|
99 |
+
[tools_factory.create_tool(tool) for tool in
|
100 |
+
[
|
101 |
+
get_company_info,
|
102 |
+
get_valid_years,
|
103 |
+
get_income_statement,
|
104 |
+
]
|
105 |
+
] +
|
106 |
+
tools_factory.standard_tools() +
|
107 |
+
tools_factory.financial_tools() +
|
108 |
+
tools_factory.guardrail_tools() +
|
109 |
+
[ask_transcripts]
|
110 |
+
)
|
111 |
+
|
112 |
+
def initialize_agent(_cfg, update_func):
|
113 |
+
financial_bot_instructions = """
|
114 |
+
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
|
115 |
+
- Respond in a compact format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions).
|
116 |
+
Do not report the same number twice (e.g. $100K and 100,000 USD).
|
117 |
+
- Always check the get_company_info and get_valid_years tools to validate company and year are valid.
|
118 |
+
- Do not include URLS unless they are from one of the tools.
|
119 |
+
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for.
|
120 |
+
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
|
121 |
+
"""
|
122 |
+
|
123 |
+
agent = Agent(
|
124 |
+
tools=create_assistant_tools(_cfg),
|
125 |
+
topic="Financial data, annual reports and 10-K filings",
|
126 |
+
custom_instructions=financial_bot_instructions,
|
127 |
+
update_func=update_func
|
128 |
+
)
|
129 |
+
agent.report()
|
130 |
+
return agent
|
131 |
+
|
132 |
+
|
133 |
+
def get_agent_config() -> OmegaConf:
|
134 |
+
companies = ", ".join(tickers.values())
|
135 |
+
cfg = OmegaConf.create({
|
136 |
+
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
137 |
+
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
138 |
+
'api_key': str(os.environ['VECTARA_API_KEY']),
|
139 |
+
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
140 |
+
'title': "Financial Assistant",
|
141 |
+
'demo_welcome': "Welcome to the Financial Assistant demo.",
|
142 |
+
'demo_description': f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n"
|
143 |
+
})
|
144 |
+
return cfg
|
app.py
CHANGED
@@ -1,148 +1,15 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
from PIL import Image
|
4 |
import sys
|
5 |
-
import pandas as pd
|
6 |
-
import requests
|
7 |
|
8 |
-
from omegaconf import OmegaConf
|
9 |
import streamlit as st
|
10 |
from streamlit_pills import pills
|
11 |
|
12 |
-
from
|
13 |
-
load_dotenv(override=True)
|
14 |
|
15 |
-
from
|
16 |
-
from vectara_agent.agent import Agent, AgentStatusType
|
17 |
-
from vectara_agent.tools import ToolsFactory, VectaraToolFactory
|
18 |
|
19 |
-
tickers = {
|
20 |
-
"AAPL": "Apple Computer",
|
21 |
-
"GOOG": "Google",
|
22 |
-
"AMZN": "Amazon",
|
23 |
-
"SNOW": "Snowflake",
|
24 |
-
"TEAM": "Atlassian",
|
25 |
-
"TSLA": "Tesla",
|
26 |
-
"NVDA": "Nvidia",
|
27 |
-
"MSFT": "Microsoft",
|
28 |
-
"AMD": "Advanced Micro Devices",
|
29 |
-
"INTC": "Intel",
|
30 |
-
"NFLX": "Netflix",
|
31 |
-
}
|
32 |
-
years = [2020, 2021, 2022, 2023, 2024]
|
33 |
initial_prompt = "How can I help you today?"
|
34 |
|
35 |
-
def create_assistant_tools(cfg):
|
36 |
-
|
37 |
-
def get_company_info() -> list[str]:
|
38 |
-
"""
|
39 |
-
Returns a dictionary of companies you can query about. Always check this before using any other tool.
|
40 |
-
The output is a dictionary of valid ticker symbols mapped to company names.
|
41 |
-
You can use this to identify the companies you can query about, and their ticker information.
|
42 |
-
"""
|
43 |
-
return tickers
|
44 |
-
|
45 |
-
def get_valid_years() -> list[str]:
|
46 |
-
"""
|
47 |
-
Returns a list of the years for which financial reports are available.
|
48 |
-
Always check this before using any other tool.
|
49 |
-
"""
|
50 |
-
return years
|
51 |
-
|
52 |
-
# Tool to get the income statement for a given company and year using the FMP API
|
53 |
-
def get_income_statement(
|
54 |
-
ticker=Field(description="the ticker symbol of the company."),
|
55 |
-
year=Field(description="the year for which to get the income statement."),
|
56 |
-
) -> str:
|
57 |
-
"""
|
58 |
-
Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
|
59 |
-
Returns a dictionary with the income statement data. All data is in USD, but you can convert it to more compact form like K, M, B.
|
60 |
-
"""
|
61 |
-
fmp_api_key = os.environ.get("FMP_API_KEY", None)
|
62 |
-
if fmp_api_key is None:
|
63 |
-
return "FMP_API_KEY environment variable not set. This tool does not work."
|
64 |
-
url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
|
65 |
-
response = requests.get(url)
|
66 |
-
if response.status_code == 200:
|
67 |
-
data = response.json()
|
68 |
-
income_statement = pd.DataFrame(data)
|
69 |
-
income_statement["date"] = pd.to_datetime(income_statement["date"])
|
70 |
-
income_statement_specific_year = income_statement[
|
71 |
-
income_statement["date"].dt.year == int(year)
|
72 |
-
]
|
73 |
-
values_dict = income_statement_specific_year.to_dict(orient="records")[0]
|
74 |
-
return f"Financial results: {', '.join([f'{key}: {value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
|
75 |
-
else:
|
76 |
-
return "FMP API returned error. This tool does not work."
|
77 |
-
|
78 |
-
class QueryTranscriptsArgs(BaseModel):
|
79 |
-
query: str = Field(..., description="The user query.")
|
80 |
-
year: int = Field(..., description=f"The year. An integer between {min(years)} and {max(years)}.")
|
81 |
-
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
|
82 |
-
|
83 |
-
vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key,
|
84 |
-
vectara_customer_id=cfg.customer_id,
|
85 |
-
vectara_corpus_id=cfg.corpus_id)
|
86 |
-
tools_factory = ToolsFactory()
|
87 |
-
|
88 |
-
ask_transcripts = vec_factory.create_rag_tool(
|
89 |
-
tool_name = "ask_transcripts",
|
90 |
-
tool_description = """
|
91 |
-
Given a company name and year, responds to a user question about the company, based on analyst call transcripts about the company's financial reports for that year.
|
92 |
-
You can ask this tool any question about the compaany including risks, opportunities, financial performance, competitors and more.
|
93 |
-
""",
|
94 |
-
tool_args_schema = QueryTranscriptsArgs,
|
95 |
-
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
96 |
-
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
97 |
-
summary_num_results = 10,
|
98 |
-
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
|
99 |
-
include_citations = False,
|
100 |
-
)
|
101 |
-
|
102 |
-
return (
|
103 |
-
[tools_factory.create_tool(tool) for tool in
|
104 |
-
[
|
105 |
-
get_company_info,
|
106 |
-
get_valid_years,
|
107 |
-
get_income_statement,
|
108 |
-
]
|
109 |
-
] +
|
110 |
-
tools_factory.standard_tools() +
|
111 |
-
tools_factory.financial_tools() +
|
112 |
-
tools_factory.guardrail_tools() +
|
113 |
-
[ask_transcripts]
|
114 |
-
)
|
115 |
-
|
116 |
-
def initialize_agent(_cfg):
|
117 |
-
if 'agent' in st.session_state:
|
118 |
-
return st.session_state.agent
|
119 |
-
|
120 |
-
financial_bot_instructions = """
|
121 |
-
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
|
122 |
-
- Respond in a compact format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions).
|
123 |
-
Do not report the same number twice (e.g. $100K and 100,000 USD).
|
124 |
-
- Always check the get_company_info and get_valid_years tools to validate company and year are valid.
|
125 |
-
- Do not include URLS unless they are from one of the tools.
|
126 |
-
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for.
|
127 |
-
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
|
128 |
-
"""
|
129 |
-
|
130 |
-
def update_func(status_type: AgentStatusType, msg: str):
|
131 |
-
if status_type != AgentStatusType.AGENT_UPDATE:
|
132 |
-
output = f"{status_type.value} - {msg}"
|
133 |
-
st.session_state.log_messages.append(output)
|
134 |
-
|
135 |
-
agent = Agent(
|
136 |
-
tools=create_assistant_tools(_cfg),
|
137 |
-
topic="Financial data, annual reports and 10-K filings",
|
138 |
-
custom_instructions=financial_bot_instructions,
|
139 |
-
update_func=update_func
|
140 |
-
)
|
141 |
-
agent.report()
|
142 |
-
|
143 |
-
return agent
|
144 |
-
|
145 |
-
|
146 |
def toggle_logs():
|
147 |
st.session_state.show_logs = not st.session_state.show_logs
|
148 |
|
@@ -155,6 +22,11 @@ def show_example_questions():
|
|
155 |
return True
|
156 |
return False
|
157 |
|
|
|
|
|
|
|
|
|
|
|
158 |
def launch_bot():
|
159 |
def reset():
|
160 |
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}]
|
@@ -162,17 +34,13 @@ def launch_bot():
|
|
162 |
st.session_state.log_messages = []
|
163 |
st.session_state.prompt = None
|
164 |
st.session_state.ex_prompt = None
|
165 |
-
st.session_state.show_logs = False
|
166 |
st.session_state.first_turn = True
|
|
|
|
|
|
|
167 |
|
168 |
-
st.set_page_config(page_title="Financial Assistant", layout="wide")
|
169 |
if 'cfg' not in st.session_state:
|
170 |
-
cfg =
|
171 |
-
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
172 |
-
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
173 |
-
'api_key': str(os.environ['VECTARA_API_KEY']),
|
174 |
-
'examples': os.environ.get('QUERY_EXAMPLES', None)
|
175 |
-
})
|
176 |
st.session_state.cfg = cfg
|
177 |
st.session_state.ex_prompt = None
|
178 |
example_messages = [example.strip() for example in cfg.examples.split(",")] if cfg.examples else []
|
@@ -180,18 +48,14 @@ def launch_bot():
|
|
180 |
reset()
|
181 |
|
182 |
cfg = st.session_state.cfg
|
183 |
-
|
184 |
-
st.session_state.agent = initialize_agent(cfg)
|
185 |
|
186 |
# left side content
|
187 |
with st.sidebar:
|
188 |
image = Image.open('Vectara-logo.png')
|
189 |
st.image(image, width=175)
|
190 |
-
st.markdown("##
|
191 |
-
|
192 |
-
st.markdown(
|
193 |
-
f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n"
|
194 |
-
)
|
195 |
|
196 |
st.markdown("\n\n")
|
197 |
bc1, _ = st.columns([1, 1])
|
@@ -206,7 +70,6 @@ def launch_bot():
|
|
206 |
"This app was built with [Vectara](https://vectara.com).\n\n"
|
207 |
"It demonstrates the use of Agentic RAG functionality with Vectara"
|
208 |
)
|
209 |
-
st.markdown("---")
|
210 |
|
211 |
if "messages" not in st.session_state.keys():
|
212 |
reset()
|
@@ -249,8 +112,9 @@ def launch_bot():
|
|
249 |
st.markdown(res)
|
250 |
st.session_state.ex_prompt = None
|
251 |
st.session_state.prompt = None
|
|
|
252 |
st.rerun()
|
253 |
-
|
254 |
log_placeholder = st.empty()
|
255 |
with log_placeholder.container():
|
256 |
if st.session_state.show_logs:
|
@@ -264,5 +128,4 @@ def launch_bot():
|
|
264 |
sys.stdout.flush()
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
-
launch_bot()
|
268 |
-
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import sys
|
|
|
|
|
3 |
|
|
|
4 |
import streamlit as st
|
5 |
from streamlit_pills import pills
|
6 |
|
7 |
+
from vectara_agent.agent import AgentStatusType
|
|
|
8 |
|
9 |
+
from agent import initialize_agent, get_agent_config
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
initial_prompt = "How can I help you today?"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def toggle_logs():
|
14 |
st.session_state.show_logs = not st.session_state.show_logs
|
15 |
|
|
|
22 |
return True
|
23 |
return False
|
24 |
|
25 |
+
def update_func(status_type: AgentStatusType, msg: str):
|
26 |
+
if status_type != AgentStatusType.AGENT_UPDATE:
|
27 |
+
output = f"{status_type.value} - {msg}"
|
28 |
+
st.session_state.log_messages.append(output)
|
29 |
+
|
30 |
def launch_bot():
|
31 |
def reset():
|
32 |
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}]
|
|
|
34 |
st.session_state.log_messages = []
|
35 |
st.session_state.prompt = None
|
36 |
st.session_state.ex_prompt = None
|
|
|
37 |
st.session_state.first_turn = True
|
38 |
+
st.session_state.show_logs = False
|
39 |
+
if 'agent' not in st.session_state:
|
40 |
+
st.session_state.agent = initialize_agent(cfg, update_func=update_func)
|
41 |
|
|
|
42 |
if 'cfg' not in st.session_state:
|
43 |
+
cfg = get_agent_config()
|
|
|
|
|
|
|
|
|
|
|
44 |
st.session_state.cfg = cfg
|
45 |
st.session_state.ex_prompt = None
|
46 |
example_messages = [example.strip() for example in cfg.examples.split(",")] if cfg.examples else []
|
|
|
48 |
reset()
|
49 |
|
50 |
cfg = st.session_state.cfg
|
51 |
+
st.set_page_config(page_title=cfg['title'], layout="wide")
|
|
|
52 |
|
53 |
# left side content
|
54 |
with st.sidebar:
|
55 |
image = Image.open('Vectara-logo.png')
|
56 |
st.image(image, width=175)
|
57 |
+
st.markdown(f"## {cfg['demo_welcome']}")
|
58 |
+
st.markdown(f"{cfg['demo_description']}")
|
|
|
|
|
|
|
59 |
|
60 |
st.markdown("\n\n")
|
61 |
bc1, _ = st.columns([1, 1])
|
|
|
70 |
"This app was built with [Vectara](https://vectara.com).\n\n"
|
71 |
"It demonstrates the use of Agentic RAG functionality with Vectara"
|
72 |
)
|
|
|
73 |
|
74 |
if "messages" not in st.session_state.keys():
|
75 |
reset()
|
|
|
112 |
st.markdown(res)
|
113 |
st.session_state.ex_prompt = None
|
114 |
st.session_state.prompt = None
|
115 |
+
st.session_state.first_turn = False
|
116 |
st.rerun()
|
117 |
+
|
118 |
log_placeholder = st.empty()
|
119 |
with log_placeholder.container():
|
120 |
if st.session_state.show_logs:
|
|
|
128 |
sys.stdout.flush()
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
+
launch_bot()
|
|