# Adapted from score written by wkentaro # https://github.com/wkentaro/pytorch-fcn/blob/master/torchfcn/utils.py import numpy as np class runningScore(object): def __init__(self, n_classes): self.n_classes = n_classes self.confusion_matrix = np.zeros((n_classes, n_classes)) def _fast_hist(self, label_true, label_pred, n_class): mask = (label_true >= 0) & (label_true < n_class) if np.sum((label_pred[mask] < 0)) > 0: print(label_pred[label_pred < 0]) hist = np.bincount(n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class) return hist def update(self, label_trues, label_preds): # print label_trues.dtype, label_preds.dtype for lt, lp in zip(label_trues, label_preds): try: self.confusion_matrix += self._fast_hist(lt.flatten(), lp.flatten(), self.n_classes) except: pass def get_scores(self): """Returns accuracy score evaluation result. - overall accuracy - mean accuracy - mean IU - fwavacc """ hist = self.confusion_matrix acc = np.diag(hist).sum() / (hist.sum() + 0.0001) acc_cls = np.diag(hist) / (hist.sum(axis=1) + 0.0001) acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist) + 0.0001) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / (hist.sum() + 0.0001) fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() cls_iu = dict(zip(range(self.n_classes), iu)) return {'Overall Acc': acc, 'Mean Acc': acc_cls, 'FreqW Acc': fwavacc, 'Mean IoU': mean_iu, }, cls_iu def reset(self): self.confusion_matrix = np.zeros((self.n_classes, self.n_classes))