# -*- coding: utf-8 -*- import torch from torch import nn import torch.nn.functional as F class FPN(nn.Module): def __init__(self, backbone_out_channels, **kwargs): """ :param backbone_out_channels: 基础网络输出的维度 :param kwargs: """ super().__init__() # result_num = kwargs.get('result_num', 6) inplace = True conv_out = 256 # reduce layers self.reduce_conv_c2 = nn.Sequential( nn.Conv2d(backbone_out_channels[0], conv_out, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.reduce_conv_c3 = nn.Sequential( nn.Conv2d(backbone_out_channels[1], conv_out, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.reduce_conv_c4 = nn.Sequential( nn.Conv2d(backbone_out_channels[2], conv_out, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.reduce_conv_c5 = nn.Sequential( nn.Conv2d(backbone_out_channels[3], conv_out, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) # Smooth layers self.smooth_p4 = nn.Sequential( nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.smooth_p3 = nn.Sequential( nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.smooth_p2 = nn.Sequential( nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) self.conv = nn.Sequential( nn.Conv2d(conv_out * 4, conv_out, kernel_size=3, padding=1, stride=1), nn.BatchNorm2d(conv_out), nn.ReLU(inplace=inplace) ) # self.out_conv = nn.Conv2d(conv_out, result_num, kernel_size=1, stride=1) self.pred_conv = nn.Sequential( nn.Conv2d(conv_out, 2, kernel_size=1, stride=1, padding=0), nn.Sigmoid() ) def forward(self, x): c2, c3, c4, c5 = x # Top-down p5 = self.reduce_conv_c5(c5) p4 = self._upsample_add(p5, self.reduce_conv_c4(c4)) p4 = self.smooth_p4(p4) p3 = self._upsample_add(p4, self.reduce_conv_c3(c3)) p3 = self.smooth_p3(p3) p2 = self._upsample_add(p3, self.reduce_conv_c2(c2)) p2 = self.smooth_p2(p2) x = self._upsample_cat(p2, p3, p4, p5) x = self.conv(x) # x = self.out_conv(x) x = self.pred_conv(x) return x def _upsample_add(self, x, y): return F.interpolate(x, size=y.size()[2:], mode='bilinear', align_corners=True) + y def _upsample_cat(self, p2, p3, p4, p5): h, w = p2.size()[2:] p3 = F.interpolate(p3, size=(h, w), mode='bilinear', align_corners=True) p4 = F.interpolate(p4, size=(h, w), mode='bilinear', align_corners=True) p5 = F.interpolate(p5, size=(h, w), mode='bilinear', align_corners=True) return torch.cat([p2, p3, p4, p5], dim=1) class FPEM_FFM(nn.Module): def __init__(self, backbone_out_channels, **kwargs): """ PANnet :param backbone_out_channels: 基础网络输出的维度 """ super().__init__() fpem_repeat = kwargs.get('fpem_repeat', 2) conv_out = 128 # reduce layers self.reduce_conv_c2 = nn.Sequential( nn.Conv2d(in_channels=backbone_out_channels[0], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU() ) self.reduce_conv_c3 = nn.Sequential( nn.Conv2d(in_channels=backbone_out_channels[1], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU() ) self.reduce_conv_c4 = nn.Sequential( nn.Conv2d(in_channels=backbone_out_channels[2], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU() ) self.reduce_conv_c5 = nn.Sequential( nn.Conv2d(in_channels=backbone_out_channels[3], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU() ) self.fpems = nn.ModuleList() for i in range(fpem_repeat): self.fpems.append(FPEM(conv_out)) self.out_conv = nn.Conv2d(in_channels=conv_out * 4, out_channels=6, kernel_size=1) def forward(self, x): c2, c3, c4, c5 = x # reduce channel c2 = self.reduce_conv_c2(c2) c3 = self.reduce_conv_c3(c3) c4 = self.reduce_conv_c4(c4) c5 = self.reduce_conv_c5(c5) # FPEM for i, fpem in enumerate(self.fpems): c2, c3, c4, c5 = fpem(c2, c3, c4, c5) if i == 0: c2_ffm = c2 c3_ffm = c3 c4_ffm = c4 c5_ffm = c5 else: c2_ffm += c2 c3_ffm += c3 c4_ffm += c4 c5_ffm += c5 # FFM c5 = F.interpolate(c5_ffm, c2_ffm.size()[-2:], mode='bilinear') c4 = F.interpolate(c4_ffm, c2_ffm.size()[-2:], mode='bilinear') c3 = F.interpolate(c3_ffm, c2_ffm.size()[-2:], mode='bilinear') Fy = torch.cat([c2_ffm, c3, c4, c5], dim=1) y = self.out_conv(Fy) return y class FPEM(nn.Module): def __init__(self, in_channels=128): super().__init__() self.up_add1 = SeparableConv2d(in_channels, in_channels, 1) self.up_add2 = SeparableConv2d(in_channels, in_channels, 1) self.up_add3 = SeparableConv2d(in_channels, in_channels, 1) self.down_add1 = SeparableConv2d(in_channels, in_channels, 2) self.down_add2 = SeparableConv2d(in_channels, in_channels, 2) self.down_add3 = SeparableConv2d(in_channels, in_channels, 2) def forward(self, c2, c3, c4, c5): # up阶段 c4 = self.up_add1(self._upsample_add(c5, c4)) c3 = self.up_add2(self._upsample_add(c4, c3)) c2 = self.up_add3(self._upsample_add(c3, c2)) # down 阶段 c3 = self.down_add1(self._upsample_add(c3, c2)) c4 = self.down_add2(self._upsample_add(c4, c3)) c5 = self.down_add3(self._upsample_add(c5, c4)) return c2, c3, c4, c5 def _upsample_add(self, x, y): return F.interpolate(x, size=y.size()[2:], mode='bilinear') + y class SeparableConv2d(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(SeparableConv2d, self).__init__() self.depthwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1, stride=stride, groups=in_channels) self.pointwise_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): x = self.depthwise_conv(x) x = self.pointwise_conv(x) x = self.bn(x) x = self.relu(x) return x