Spaces:
Sleeping
Sleeping
File size: 6,182 Bytes
0742dfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import math
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url
__all__ = ['mobilenet_v2_x1_0']
model_urls = {
#currently hadn't found a pretrained weight
'mobilenet_v2_x1_0': None,
}
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
if not (1 <= stride <= 2):
raise ValueError('illegal stride value')
self.stride = stride
self.exp_r = expand_ratio;
hidden_dim = round(inp * self.exp_r);
if self.exp_r == 1:
self.branch = nn.Sequential(
# dw conv
self.depthwise_conv(hidden_dim, hidden_dim, 3, stride, padding = 1, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.branch = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
self.depthwise_conv(hidden_dim, hidden_dim, 3, stride, padding = 1, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
self.downsample = nn.Sequential(
nn.Conv2d(inp, oup, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(oup),
)
self.identity = stride == 1
@staticmethod
def depthwise_conv(i, o, kernel_size, stride, padding, bias=False):
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def forward(self, x):
if self.identity:
downsampx = self.downsample(x)
return downsampx + self.branch(x)
else:
return self.branch(x)
class MobileNetV2(nn.Module):
def __init__(self, stages_repeats, stages_out_channels, num_classes=1000, width_mult=1.):
super(MobileNetV2, self).__init__()
if len(stages_repeats) != 5:
raise ValueError('expected stages_repeats as list of 4 positive ints')
if len(stages_out_channels) != 6:
raise ValueError('expected stages_out_channels as list of 5 positive ints')
self._stage_out_channels = stages_out_channels
self.tlist = [1,6,6,6,6]
self.slist = [1,2,2,2,1]
input_channels = 3
output_channels = self._stage_out_channels[0] # 32
#output_channels = _make_divisible(output_channels * width_mult, 4 if width_mult == 0.1 else 8)
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU6(inplace=True),
)
input_channels = output_channels
stage_names = ['stage{}'.format(i) for i in [2, 3, 4, 5, 6]]
for name, repeats, output_channels, t, s in zip(
stage_names, stages_repeats, self._stage_out_channels[1:], self.tlist, self.slist):
#output_channels = _make_divisible(output_channels * width_mult, 4 if width_mult == 0.1 else 8)
seq = [InvertedResidual(input_channels, output_channels, s, t)]
for i in range(repeats - 1):
seq.append(InvertedResidual(output_channels, output_channels, 1, t))
setattr(self, name, nn.Sequential(*seq))
input_channels = output_channels
output_channels = self._stage_out_channels[-1]
self.conv9 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU6(inplace=True),
)
def forward(self, x):
x = self.conv1(x)
c2 = self.stage2(x)
c3 = self.stage3(c2)
c4 = self.stage4(c3)
c5 = self.stage5(c4)
c6 = self.stage6(c5)
#c7 = self.stage7(c6)
#c8 = self.stage8(c7)
#c9 = self.conv9(c8)
return c3, c4, c5, c6
def _mobilenetv2(arch, pretrained, progress, *args, **kwargs):
model = MobileNetV2(*args, **kwargs)
if pretrained:
model_url = model_urls[arch]
if model_url is None:
raise NotImplementedError('pretrained {} is not supported as of now'.format(arch))
else:
state_dict = load_state_dict_from_url(model_url, progress=progress)
model.load_state_dict(state_dict,strict=False)
return model
def mobilenet_v2_x1_0(pretrained=False, progress=True, **kwargs):
"""
Constructs a ShuffleNetV2 with 0.5x output channels, as described in
`"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
<https://arxiv.org/abs/1807.11164>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _mobilenetv2('mobilenet_v2_x1_0', pretrained, progress,
[1, 2, 3, 4, 3], [32, 16, 24, 40, 160, 160], **kwargs) |