File size: 6,182 Bytes
0742dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import math
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url

__all__ = ['mobilenet_v2_x1_0']

model_urls = {
    #currently hadn't found a pretrained weight
    'mobilenet_v2_x1_0': None,
}
def _make_divisible(v, divisor, min_value=None):
        """
        This function is taken from the original tf repo.
        It ensures that all layers have a channel number that is divisible by 8
        It can be seen here:
        https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
        :param v:
        :param divisor:
        :param min_value:
        :return:
        """
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        # Make sure that round down does not go down by more than 10%.
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 2):
            raise ValueError('illegal stride value')
        self.stride = stride

        self.exp_r = expand_ratio;
        hidden_dim = round(inp * self.exp_r);

        if self.exp_r == 1:
            self.branch = nn.Sequential(
                # dw conv
                self.depthwise_conv(hidden_dim, hidden_dim, 3, stride, padding = 1, bias=False),               
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

        else:
            self.branch = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                self.depthwise_conv(hidden_dim, hidden_dim, 3, stride, padding = 1, bias=False),               
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

        self.downsample = nn.Sequential(
            nn.Conv2d(inp, oup, kernel_size=1, stride=stride, bias=False),
            nn.BatchNorm2d(oup),
        )

        self.identity = stride == 1 
    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride, padding, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.identity:
            downsampx = self.downsample(x)
            return downsampx + self.branch(x)
        else:
            return self.branch(x)


class MobileNetV2(nn.Module):
    def __init__(self,  stages_repeats, stages_out_channels, num_classes=1000, width_mult=1.):
        super(MobileNetV2, self).__init__()

        if len(stages_repeats) != 5:
            raise ValueError('expected stages_repeats as list of 4 positive ints')
        if len(stages_out_channels) != 6:
            raise ValueError('expected stages_out_channels as list of 5 positive ints')
        self._stage_out_channels = stages_out_channels

        self.tlist = [1,6,6,6,6]
        self.slist = [1,2,2,2,1]

        input_channels = 3
        output_channels = self._stage_out_channels[0] # 32
        #output_channels = _make_divisible(output_channels * width_mult, 4 if width_mult == 0.1 else 8)

        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU6(inplace=True),
        )
        input_channels = output_channels


        stage_names = ['stage{}'.format(i) for i in [2, 3, 4, 5, 6]]
        for name, repeats, output_channels, t, s in zip(
                stage_names, stages_repeats, self._stage_out_channels[1:], self.tlist, self.slist):
            
            #output_channels = _make_divisible(output_channels * width_mult, 4 if width_mult == 0.1 else 8)

            seq = [InvertedResidual(input_channels, output_channels, s, t)]
            for i in range(repeats - 1):
                
                seq.append(InvertedResidual(output_channels, output_channels, 1, t))
                


            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels
            

        output_channels = self._stage_out_channels[-1]

        self.conv9 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU6(inplace=True),
        )



    def forward(self, x):
        x = self.conv1(x)
        c2 = self.stage2(x)
        c3 = self.stage3(c2)
        c4 = self.stage4(c3)
        c5 = self.stage5(c4)
        c6 = self.stage6(c5)
        #c7 = self.stage7(c6)
        #c8 = self.stage8(c7)
        #c9 = self.conv9(c8)

        return c3, c4, c5, c6
    

    
def _mobilenetv2(arch, pretrained, progress, *args, **kwargs):
    model = MobileNetV2(*args, **kwargs)

    if pretrained:
        model_url = model_urls[arch]
        if model_url is None:
            raise NotImplementedError('pretrained {} is not supported as of now'.format(arch))
        else:
            state_dict = load_state_dict_from_url(model_url, progress=progress)
            model.load_state_dict(state_dict,strict=False)

    return model


def mobilenet_v2_x1_0(pretrained=False, progress=True, **kwargs):
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _mobilenetv2('mobilenet_v2_x1_0', pretrained, progress,
                         [1, 2, 3, 4, 3], [32, 16, 24, 40, 160, 160], **kwargs)