|
from __future__ import annotations |
|
import logging |
|
|
|
from typing import List, Optional, Tuple, Union |
|
import numpy as np |
|
from numpy import ndarray |
|
import torch |
|
from torch import Generator, FloatTensor |
|
from diffusers.schedulers.scheduling_euler_discrete import ( |
|
EulerDiscreteScheduler as DiffusersEulerDiscreteScheduler, |
|
EulerDiscreteSchedulerOutput, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..utils.noise_util import video_fusion_noise |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class EulerDiscreteScheduler(DiffusersEulerDiscreteScheduler): |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: ndarray | List[float] | None = None, |
|
prediction_type: str = "epsilon", |
|
interpolation_type: str = "linear", |
|
use_karras_sigmas: bool | None = False, |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
): |
|
super().__init__( |
|
num_train_timesteps, |
|
beta_start, |
|
beta_end, |
|
beta_schedule, |
|
trained_betas, |
|
prediction_type, |
|
interpolation_type, |
|
use_karras_sigmas, |
|
timestep_spacing, |
|
steps_offset, |
|
) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
noise_type: str = "random", |
|
) -> Union[EulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
gamma = ( |
|
min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) |
|
if s_tmin <= sigma <= s_tmax |
|
else 0.0 |
|
) |
|
device = model_output.device |
|
|
|
if noise_type == "random": |
|
noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
elif noise_type == "video_fusion": |
|
noise = video_fusion_noise( |
|
model_output, w_ind_noise=w_ind_noise, generator=generator |
|
) |
|
|
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
if ( |
|
self.config.prediction_type == "original_sample" |
|
or self.config.prediction_type == "sample" |
|
): |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma_hat * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + ( |
|
sample / (sigma**2 + 1) |
|
) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = self.sigmas[self.step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerDiscreteSchedulerOutput( |
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|
|
def step_bk( |
|
self, |
|
model_output: FloatTensor, |
|
timestep: float | FloatTensor, |
|
sample: FloatTensor, |
|
s_churn: float = 0, |
|
s_tmin: float = 0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1, |
|
generator: Generator | None = None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
noise_type: str = "random", |
|
) -> EulerDiscreteSchedulerOutput | Tuple: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`float`): current timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
s_churn (`float`) |
|
s_tmin (`float`) |
|
s_tmax (`float`) |
|
s_noise (`float`) |
|
generator (`torch.Generator`, optional): Random number generator. |
|
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
sigma = self.sigmas[step_index] |
|
|
|
gamma = ( |
|
min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) |
|
if s_tmin <= sigma <= s_tmax |
|
else 0.0 |
|
) |
|
|
|
device = model_output.device |
|
if noise_type == "random": |
|
noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
elif noise_type == "video_fusion": |
|
noise = video_fusion_noise( |
|
model_output, w_ind_noise=w_ind_noise, generator=generator |
|
) |
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
if ( |
|
self.config.prediction_type == "original_sample" |
|
or self.config.prediction_type == "sample" |
|
): |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma_hat * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + ( |
|
sample / (sigma**2 + 1) |
|
) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = self.sigmas[step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerDiscreteSchedulerOutput( |
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|