|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
from numpy import ndarray |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import ( |
|
KarrasDiffusionSchedulers, |
|
SchedulerMixin, |
|
) |
|
from diffusers.schedulers.scheduling_ddim import ( |
|
DDIMSchedulerOutput, |
|
rescale_zero_terminal_snr, |
|
betas_for_alpha_bar, |
|
DDIMScheduler as DiffusersDDIMScheduler, |
|
) |
|
from ..utils.noise_util import video_fusion_noise |
|
|
|
|
|
class DDIMScheduler(DiffusersDDIMScheduler): |
|
""" |
|
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with |
|
non-Markovian guidance. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
clip_sample (`bool`, defaults to `True`): |
|
Clip the predicted sample for numerical stability. |
|
clip_sample_range (`float`, defaults to 1.0): |
|
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. |
|
set_alpha_to_one (`bool`, defaults to `True`): |
|
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step |
|
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the alpha value at step 0. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. |
|
timestep_spacing (`str`, defaults to `"leading"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
rescale_betas_zero_snr (`bool`, defaults to `False`): |
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and |
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to |
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: ndarray | List[float] | None = None, |
|
clip_sample: bool = True, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
clip_sample_range: float = 1, |
|
sample_max_value: float = 1, |
|
timestep_spacing: str = "leading", |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
super().__init__( |
|
num_train_timesteps, |
|
beta_start, |
|
beta_end, |
|
beta_schedule, |
|
trained_betas, |
|
clip_sample, |
|
set_alpha_to_one, |
|
steps_offset, |
|
prediction_type, |
|
thresholding, |
|
dynamic_thresholding_ratio, |
|
clip_sample_range, |
|
sample_max_value, |
|
timestep_spacing, |
|
rescale_betas_zero_snr, |
|
) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
noise_type: str = "random", |
|
) -> Union[DDIMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
eta (`float`): |
|
The weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`, defaults to `False`): |
|
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary |
|
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no |
|
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and |
|
`use_clipped_model_output` has no effect. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
variance_noise (`torch.FloatTensor`): |
|
Alternative to generating noise with `generator` by directly providing the noise for the variance |
|
itself. Useful for methods such as [`CycleDiffusion`]. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prev_timestep = ( |
|
timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
) |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
self.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = ( |
|
sample - beta_prod_t ** (0.5) * model_output |
|
) / alpha_prod_t ** (0.5) |
|
pred_epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
pred_epsilon = ( |
|
sample - alpha_prod_t ** (0.5) * pred_original_sample |
|
) / beta_prod_t ** (0.5) |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - ( |
|
beta_prod_t**0.5 |
|
) * model_output |
|
pred_epsilon = (alpha_prod_t**0.5) * model_output + ( |
|
beta_prod_t**0.5 |
|
) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
pred_original_sample = self._threshold_sample(pred_original_sample) |
|
elif self.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
variance = self._get_variance(timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
if use_clipped_model_output: |
|
|
|
pred_epsilon = ( |
|
sample - alpha_prod_t ** (0.5) * pred_original_sample |
|
) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** ( |
|
0.5 |
|
) * pred_epsilon |
|
|
|
|
|
prev_sample = ( |
|
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
) |
|
|
|
if eta > 0: |
|
if variance_noise is not None and generator is not None: |
|
raise ValueError( |
|
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" |
|
" `variance_noise` stays `None`." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = model_output.device |
|
|
|
if noise_type == "random": |
|
variance_noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
elif noise_type == "video_fusion": |
|
variance_noise = video_fusion_noise( |
|
model_output, w_ind_noise=w_ind_noise, generator=generator |
|
) |
|
variance = std_dev_t * variance_noise |
|
|
|
prev_sample = prev_sample + variance |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return DDIMSchedulerOutput( |
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|