|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
import inspect |
|
from pprint import pprint, pformat |
|
from typing import Any, Dict, List, Optional, Tuple, Union, Literal |
|
import os |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from einops import rearrange, repeat |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.utils import BaseOutput |
|
|
|
|
|
from diffusers.models.embeddings import ( |
|
TimestepEmbedding, |
|
Timesteps, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin, load_state_dict |
|
from diffusers import __version__ |
|
from diffusers.utils import ( |
|
CONFIG_NAME, |
|
DIFFUSERS_CACHE, |
|
FLAX_WEIGHTS_NAME, |
|
HF_HUB_OFFLINE, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
_add_variant, |
|
_get_model_file, |
|
is_accelerate_available, |
|
is_torch_version, |
|
) |
|
from diffusers.utils.import_utils import _safetensors_available |
|
from diffusers.models.unet_3d_condition import ( |
|
UNet3DConditionOutput, |
|
UNet3DConditionModel as DiffusersUNet3DConditionModel, |
|
) |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
AttnProcessor, |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
) |
|
|
|
from ..models import Model_Register |
|
|
|
from .resnet import TemporalConvLayer |
|
from .temporal_transformer import ( |
|
TransformerTemporalModel, |
|
) |
|
from .embeddings import get_2d_sincos_pos_embed, resize_spatial_position_emb |
|
from .unet_3d_blocks import ( |
|
CrossAttnDownBlock3D, |
|
CrossAttnUpBlock3D, |
|
DownBlock3D, |
|
UNetMidBlock3DCrossAttn, |
|
UpBlock3D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
from ..data.data_util import ( |
|
adaptive_instance_normalization, |
|
align_repeat_tensor_single_dim, |
|
batch_adain_conditioned_tensor, |
|
batch_concat_two_tensor_with_index, |
|
concat_two_tensor, |
|
concat_two_tensor_with_index, |
|
) |
|
from .attention_processor import BaseIPAttnProcessor |
|
from .attention_processor import ReferEmbFuseAttention |
|
from .transformer_2d import Transformer2DModel |
|
from .attention import BasicTransformerBlock |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
_LOW_CPU_MEM_USAGE_DEFAULT = False |
|
|
|
if is_accelerate_available(): |
|
import accelerate |
|
from accelerate.utils import set_module_tensor_to_device |
|
from accelerate.utils.versions import is_torch_version |
|
|
|
|
|
import safetensors |
|
|
|
|
|
def hack_t2i_sd_layer_attn_with_ip( |
|
unet: nn.Module, |
|
self_attn_class: BaseIPAttnProcessor = None, |
|
cross_attn_class: BaseIPAttnProcessor = None, |
|
): |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
if "temp_attentions" in name or "transformer_in" in name: |
|
continue |
|
if name.endswith("attn1.processor") and self_attn_class is not None: |
|
attn_procs[name] = self_attn_class() |
|
if unet.print_idx == 0: |
|
logger.debug( |
|
f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" |
|
) |
|
elif name.endswith("attn2.processor") and cross_attn_class is not None: |
|
attn_procs[name] = cross_attn_class() |
|
if unet.print_idx == 0: |
|
logger.debug( |
|
f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" |
|
) |
|
unet.set_attn_processor(attn_procs, strict=False) |
|
|
|
|
|
def convert_2D_to_3D( |
|
module_names, |
|
valid_modules=( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnUpBlock2D", |
|
"DownBlock2D", |
|
"UNetMidBlock2DCrossAttn", |
|
"UpBlock2D", |
|
), |
|
): |
|
if not isinstance(module_names, list): |
|
return module_names.replace("2D", "3D") |
|
|
|
return_modules = [] |
|
for module_name in module_names: |
|
if module_name in valid_modules: |
|
return_modules.append(module_name.replace("2D", "3D")) |
|
else: |
|
return_modules.append(module_name) |
|
return return_modules |
|
|
|
|
|
def insert_spatial_self_attn_idx(unet): |
|
pass |
|
|
|
|
|
@dataclass |
|
class UNet3DConditionOutput(BaseOutput): |
|
""" |
|
The output of [`UNet3DConditionModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep |
|
and returns sample shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the models (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): |
|
The tuple of upsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. |
|
If `None`, it will skip the normalization and activation layers in post-processing |
|
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. |
|
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. |
|
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
print_idx = 0 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D", |
|
), |
|
up_block_types: Tuple[str] = ( |
|
"UpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
), |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: int = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: int = 1024, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
temporal_conv_block: str = "TemporalConvLayer", |
|
temporal_transformer: str = "TransformerTemporalModel", |
|
need_spatial_position_emb: bool = False, |
|
need_transformer_in: bool = True, |
|
need_t2i_ip_adapter: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
t2i_ip_adapter_attn_processor: str = "NonParamT2ISelfReferenceXFormersAttnProcessor", |
|
keep_vision_condtion: bool = False, |
|
use_anivv1_cfg: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
need_zero_vis_cond_temb: bool = True, |
|
norm_spatial_length: bool = False, |
|
spatial_max_length: int = 2048, |
|
need_refer_emb: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
t2i_crossattn_ip_adapter_attn_processor: str = "T2IReferencenetIPAdapterXFormersAttnProcessor", |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_vis_cond_mask: bool = False, |
|
): |
|
"""_summary_ |
|
|
|
Args: |
|
sample_size (Optional[int], optional): _description_. Defaults to None. |
|
in_channels (int, optional): _description_. Defaults to 4. |
|
out_channels (int, optional): _description_. Defaults to 4. |
|
down_block_types (Tuple[str], optional): _description_. Defaults to ( "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D", ). |
|
up_block_types (Tuple[str], optional): _description_. Defaults to ( "UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", ). |
|
block_out_channels (Tuple[int], optional): _description_. Defaults to (320, 640, 1280, 1280). |
|
layers_per_block (int, optional): _description_. Defaults to 2. |
|
downsample_padding (int, optional): _description_. Defaults to 1. |
|
mid_block_scale_factor (float, optional): _description_. Defaults to 1. |
|
act_fn (str, optional): _description_. Defaults to "silu". |
|
norm_num_groups (Optional[int], optional): _description_. Defaults to 32. |
|
norm_eps (float, optional): _description_. Defaults to 1e-5. |
|
cross_attention_dim (int, optional): _description_. Defaults to 1024. |
|
attention_head_dim (Union[int, Tuple[int]], optional): _description_. Defaults to 8. |
|
temporal_conv_block (str, optional): 3D卷积字符串,需要注册在 Model_Register. Defaults to "TemporalConvLayer". |
|
temporal_transformer (str, optional): 时序 Transformer block字符串,需要定义在 Model_Register. Defaults to "TransformerTemporalModel". |
|
need_spatial_position_emb (bool, optional): 是否需要 spatial hw 的emb,需要配合 thw attn使用. Defaults to False. |
|
need_transformer_in (bool, optional): 是否需要 第一个 temporal_transformer_block. Defaults to True. |
|
need_t2i_ip_adapter (bool, optional): T2I 模块是否需要面向视觉条件帧的 attn. Defaults to False. |
|
need_adain_temporal_cond (bool, optional): 是否需要面向首帧 使用Adain. Defaults to False. |
|
t2i_ip_adapter_attn_processor (str, optional): |
|
t2i attn_processor的优化版,需配合need_t2i_ip_adapter使用, |
|
有 NonParam 表示无参ReferenceOnly-attn,没有表示有参 IpAdapter. |
|
Defaults to "NonParamT2ISelfReferenceXFormersAttnProcessor". |
|
keep_vision_condtion (bool, optional): 是否对视觉条件帧不加 timestep emb. Defaults to False. |
|
use_anivv1_cfg (bool, optional): 一些基本配置 是否延续AnivV设计. Defaults to False. |
|
resnet_2d_skip_time_act (bool, optional): 配合use_anivv1_cfg,修改 transformer 2d block. Defaults to False. |
|
need_zero_vis_cond_temb (bool, optional): 目前无效参数. Defaults to True. |
|
norm_spatial_length (bool, optional): 是否需要 norm_spatial_length,只有当 need_spatial_position_emb= True时,才有效. Defaults to False. |
|
spatial_max_length (int, optional): 归一化长度. Defaults to 2048. |
|
|
|
Raises: |
|
ValueError: _description_ |
|
ValueError: _description_ |
|
ValueError: _description_ |
|
""" |
|
super(UNet3DConditionModel, self).__init__() |
|
self.keep_vision_condtion = keep_vision_condtion |
|
self.use_anivv1_cfg = use_anivv1_cfg |
|
self.sample_size = sample_size |
|
self.resnet_2d_skip_time_act = resnet_2d_skip_time_act |
|
self.need_zero_vis_cond_temb = need_zero_vis_cond_temb |
|
self.norm_spatial_length = norm_spatial_length |
|
self.spatial_max_length = spatial_max_length |
|
self.need_refer_emb = need_refer_emb |
|
self.ip_adapter_cross_attn = ip_adapter_cross_attn |
|
self.need_t2i_facein = need_t2i_facein |
|
self.need_t2i_ip_adapter_face = need_t2i_ip_adapter_face |
|
|
|
logger.debug(f"need_t2i_ip_adapter_face={need_t2i_ip_adapter_face}") |
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
conv_in_kernel = 3 |
|
conv_out_kernel = 3 |
|
conv_in_padding = (conv_in_kernel - 1) // 2 |
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=conv_in_kernel, |
|
padding=conv_in_padding, |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
self.time_proj = Timesteps(block_out_channels[0], True, 0) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding( |
|
timestep_input_dim, |
|
time_embed_dim, |
|
act_fn=act_fn, |
|
) |
|
if use_anivv1_cfg: |
|
self.time_nonlinearity = nn.SiLU() |
|
|
|
|
|
frame_embed_dim = block_out_channels[0] * 4 |
|
self.frame_proj = Timesteps(block_out_channels[0], True, 0) |
|
frame_input_dim = block_out_channels[0] |
|
if temporal_transformer is not None: |
|
self.frame_embedding = TimestepEmbedding( |
|
frame_input_dim, |
|
frame_embed_dim, |
|
act_fn=act_fn, |
|
) |
|
else: |
|
self.frame_embedding = None |
|
if use_anivv1_cfg: |
|
self.femb_nonlinearity = nn.SiLU() |
|
|
|
|
|
self.need_spatial_position_emb = need_spatial_position_emb |
|
if need_spatial_position_emb: |
|
self.spatial_position_input_dim = block_out_channels[0] * 2 |
|
self.spatial_position_embed_dim = block_out_channels[0] * 4 |
|
|
|
self.spatial_position_embedding = TimestepEmbedding( |
|
self.spatial_position_input_dim, |
|
self.spatial_position_embed_dim, |
|
act_fn=act_fn, |
|
) |
|
|
|
|
|
temporal_conv_block = ( |
|
Model_Register[temporal_conv_block] |
|
if isinstance(temporal_conv_block, str) |
|
and temporal_conv_block.lower() != "none" |
|
else None |
|
) |
|
self.need_transformer_in = need_transformer_in |
|
|
|
temporal_transformer = ( |
|
Model_Register[temporal_transformer] |
|
if isinstance(temporal_transformer, str) |
|
and temporal_transformer.lower() != "none" |
|
else None |
|
) |
|
self.need_vis_cond_mask = need_vis_cond_mask |
|
|
|
if need_transformer_in and temporal_transformer is not None: |
|
self.transformer_in = temporal_transformer( |
|
num_attention_heads=attention_head_dim, |
|
attention_head_dim=block_out_channels[0] // attention_head_dim, |
|
in_channels=block_out_channels[0], |
|
num_layers=1, |
|
femb_channels=frame_embed_dim, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
|
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(down_block_types) |
|
|
|
self.need_t2i_ip_adapter = need_t2i_ip_adapter |
|
|
|
|
|
need_t2i_ip_adapter_param = ( |
|
t2i_ip_adapter_attn_processor is not None |
|
and "NonParam" not in t2i_ip_adapter_attn_processor |
|
and need_t2i_ip_adapter |
|
) |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
self.t2i_ip_adapter_attn_processor = t2i_ip_adapter_attn_processor |
|
|
|
if need_refer_emb: |
|
self.first_refer_emb_attns = ReferEmbFuseAttention( |
|
query_dim=block_out_channels[0], |
|
heads=attention_head_dim[0], |
|
dim_head=block_out_channels[0] // attention_head_dim[0], |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
self.mid_block_refer_emb_attns = ReferEmbFuseAttention( |
|
query_dim=block_out_channels[-1], |
|
heads=attention_head_dim[-1], |
|
dim_head=block_out_channels[-1] // attention_head_dim[-1], |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
else: |
|
self.first_refer_emb_attns = None |
|
self.mid_block_refer_emb_attns = None |
|
|
|
output_channel = block_out_channels[0] |
|
self.layers_per_block = layers_per_block |
|
self.block_out_channels = block_out_channels |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=time_embed_dim, |
|
femb_channels=frame_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attention_head_dim[i], |
|
downsample_padding=downsample_padding, |
|
dual_cross_attention=False, |
|
temporal_conv_block=temporal_conv_block, |
|
temporal_transformer=temporal_transformer, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
need_t2i_ip_adapter=need_t2i_ip_adapter_param, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
need_refer_emb=need_refer_emb, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
self.mid_block = UNetMidBlock3DCrossAttn( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=time_embed_dim, |
|
femb_channels=frame_embed_dim, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attention_head_dim[-1], |
|
resnet_groups=norm_num_groups, |
|
dual_cross_attention=False, |
|
temporal_conv_block=temporal_conv_block, |
|
temporal_transformer=temporal_transformer, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
need_t2i_ip_adapter=need_t2i_ip_adapter_param, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_attention_head_dim = list(reversed(attention_head_dim)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[ |
|
min(i + 1, len(block_out_channels) - 1) |
|
] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=layers_per_block + 1, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=time_embed_dim, |
|
femb_channels=frame_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=reversed_attention_head_dim[i], |
|
dual_cross_attention=False, |
|
temporal_conv_block=temporal_conv_block, |
|
temporal_transformer=temporal_transformer, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
need_t2i_ip_adapter=need_t2i_ip_adapter_param, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_num_groups is not None: |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], |
|
num_groups=norm_num_groups, |
|
eps=norm_eps, |
|
) |
|
self.conv_act = nn.SiLU() |
|
else: |
|
self.conv_norm_out = None |
|
self.conv_act = None |
|
|
|
conv_out_padding = (conv_out_kernel - 1) // 2 |
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], |
|
out_channels, |
|
kernel_size=conv_out_kernel, |
|
padding=conv_out_padding, |
|
) |
|
self.insert_spatial_self_attn_idx() |
|
|
|
|
|
if need_t2i_ip_adapter or ip_adapter_cross_attn: |
|
hack_t2i_sd_layer_attn_with_ip( |
|
self, |
|
self_attn_class=Model_Register[t2i_ip_adapter_attn_processor] |
|
if t2i_ip_adapter_attn_processor is not None and need_t2i_ip_adapter |
|
else None, |
|
cross_attn_class=Model_Register[t2i_crossattn_ip_adapter_attn_processor] |
|
if t2i_crossattn_ip_adapter_attn_processor is not None |
|
and ( |
|
ip_adapter_cross_attn or need_t2i_facein or need_t2i_ip_adapter_face |
|
) |
|
else None, |
|
) |
|
|
|
|
|
|
|
if ( |
|
t2i_ip_adapter_attn_processor is None |
|
or "NonParam" in t2i_ip_adapter_attn_processor |
|
): |
|
need_t2i_ip_adapter = False |
|
|
|
if self.print_idx == 0: |
|
logger.debug("Unet3Model Parameters") |
|
|
|
|
|
|
|
|
|
self.skip_refer_downblock_emb = False |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "set_processor"): |
|
processors[f"{name}.processor"] = module.processor |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attention_slice(self, slice_size): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
slice_size = ( |
|
num_sliceable_layers * [slice_size] |
|
if not isinstance(slice_size, list) |
|
else slice_size |
|
) |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i in range(len(slice_size)): |
|
size = slice_size[i] |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice( |
|
module: torch.nn.Module, slice_size: List[int] |
|
): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
|
|
def set_attn_processor( |
|
self, |
|
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], |
|
strict: bool = True, |
|
): |
|
r""" |
|
Parameters: |
|
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
of **all** `Attention` layers. |
|
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count and strict: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
logger.debug( |
|
f"module {name} set attn processor {processor.__class__.__name__}" |
|
) |
|
module.set_processor(processor) |
|
else: |
|
if f"{name}.processor" in processor: |
|
logger.debug( |
|
"module {} set attn processor {}".format( |
|
name, processor[f"{name}.processor"].__class__.__name__ |
|
) |
|
) |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
else: |
|
logger.debug( |
|
f"module {name} has no new target attn_processor, still use {module.processor.__class__.__name__} " |
|
) |
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
self.set_attn_processor(AttnProcessor()) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance( |
|
module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D) |
|
): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
sample_index: torch.LongTensor = None, |
|
vision_condition_frames_sample: torch.Tensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
sample_frame_rate: int = 10, |
|
skip_temporal_layers: bool = None, |
|
frame_index: torch.LongTensor = None, |
|
down_block_refer_embs: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_refer_emb: Optional[torch.Tensor] = None, |
|
refer_self_attn_emb: Optional[List[torch.Tensor]] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
vision_clip_emb: torch.Tensor = None, |
|
ip_adapter_scale: float = 1.0, |
|
face_emb: torch.Tensor = None, |
|
facein_scale: float = 1.0, |
|
ip_adapter_face_emb: torch.Tensor = None, |
|
ip_adapter_face_scale: float = 1.0, |
|
do_classifier_free_guidance: bool = False, |
|
pose_guider_emb: torch.Tensor = None, |
|
) -> Union[UNet3DConditionOutput, Tuple]: |
|
"""_summary_ |
|
|
|
Args: |
|
sample (torch.FloatTensor): _description_ |
|
timestep (Union[torch.Tensor, float, int]): _description_ |
|
encoder_hidden_states (torch.Tensor): _description_ |
|
class_labels (Optional[torch.Tensor], optional): _description_. Defaults to None. |
|
timestep_cond (Optional[torch.Tensor], optional): _description_. Defaults to None. |
|
attention_mask (Optional[torch.Tensor], optional): _description_. Defaults to None. |
|
cross_attention_kwargs (Optional[Dict[str, Any]], optional): _description_. Defaults to None. |
|
down_block_additional_residuals (Optional[Tuple[torch.Tensor]], optional): _description_. Defaults to None. |
|
mid_block_additional_residual (Optional[torch.Tensor], optional): _description_. Defaults to None. |
|
return_dict (bool, optional): _description_. Defaults to True. |
|
sample_index (torch.LongTensor, optional): _description_. Defaults to None. |
|
vision_condition_frames_sample (torch.Tensor, optional): _description_. Defaults to None. |
|
vision_conditon_frames_sample_index (torch.LongTensor, optional): _description_. Defaults to None. |
|
sample_frame_rate (int, optional): _description_. Defaults to 10. |
|
skip_temporal_layers (bool, optional): _description_. Defaults to None. |
|
frame_index (torch.LongTensor, optional): _description_. Defaults to None. |
|
up_block_additional_residual (Optional[torch.Tensor], optional): 用于up_block的 参考latent. Defaults to None. |
|
down_block_refer_embs (Optional[torch.Tensor], optional): 用于 download 的 参考latent. Defaults to None. |
|
how_fuse_referencenet_emb (Literal, optional): 如何融合 参考 latent. Defaults to ["add", "attn"]="add". |
|
add: 要求 additional_latent 和 latent hw 同尺寸. hw of addtional_latent should be same as of latent |
|
attn: concat bt*h1w1*c and bt*h2w2*c into bt*(h1w1+h2w2)*c, and then as key,value into attn |
|
Raises: |
|
ValueError: _description_ |
|
|
|
Returns: |
|
Union[UNet3DConditionOutput, Tuple]: _description_ |
|
""" |
|
|
|
if skip_temporal_layers is not None: |
|
self.set_skip_temporal_layers(skip_temporal_layers) |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
|
|
forward_upsample_size = True |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
batch_size = sample.shape[0] |
|
|
|
|
|
|
|
|
|
if vision_condition_frames_sample is not None: |
|
sample = batch_concat_two_tensor_with_index( |
|
sample, |
|
sample_index, |
|
vision_condition_frames_sample, |
|
vision_conditon_frames_sample_index, |
|
dim=2, |
|
) |
|
|
|
|
|
batch_size, channel, num_frames, height, width = sample.shape |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
temb = self.time_proj(timesteps) |
|
temb = temb.to(dtype=self.dtype) |
|
emb = self.time_embedding(temb, timestep_cond) |
|
if self.use_anivv1_cfg: |
|
emb = self.time_nonlinearity(emb) |
|
emb = emb.repeat_interleave(repeats=num_frames, dim=0) |
|
|
|
|
|
|
|
if ( |
|
self.keep_vision_condtion |
|
and num_frames > 1 |
|
and sample_index is not None |
|
and vision_conditon_frames_sample_index is not None |
|
): |
|
emb = rearrange(emb, "(b t) d -> b t d", t=num_frames) |
|
emb[:, vision_conditon_frames_sample_index, :] = 0 |
|
emb = rearrange(emb, "b t d->(b t) d") |
|
|
|
|
|
femb = None |
|
if self.temporal_transformer is not None: |
|
if frame_index is None: |
|
frame_index = torch.arange( |
|
num_frames, dtype=torch.long, device=sample.device |
|
) |
|
if self.use_anivv1_cfg: |
|
frame_index = (frame_index * sample_frame_rate).to(dtype=torch.long) |
|
femb = self.frame_proj(frame_index) |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"unet prepare frame_index, {femb.shape}, {batch_size}" |
|
) |
|
femb = repeat(femb, "t d-> b t d", b=batch_size) |
|
else: |
|
|
|
assert frame_index.ndim == 2, ValueError( |
|
"ndim of given frame_index should be 2, but {frame_index.ndim}" |
|
) |
|
femb = torch.stack( |
|
[self.frame_proj(frame_index[i]) for i in range(batch_size)], dim=0 |
|
) |
|
if self.temporal_transformer is not None: |
|
femb = femb.to(dtype=self.dtype) |
|
femb = self.frame_embedding( |
|
femb, |
|
) |
|
if self.use_anivv1_cfg: |
|
femb = self.femb_nonlinearity(femb) |
|
if encoder_hidden_states.ndim == 3: |
|
encoder_hidden_states = align_repeat_tensor_single_dim( |
|
encoder_hidden_states, target_length=emb.shape[0], dim=0 |
|
) |
|
elif encoder_hidden_states.ndim == 4: |
|
encoder_hidden_states = rearrange( |
|
encoder_hidden_states, "b t n q-> (b t) n q" |
|
) |
|
else: |
|
raise ValueError( |
|
f"only support ndim in [3, 4], but given {encoder_hidden_states.ndim}" |
|
) |
|
if vision_clip_emb is not None: |
|
if vision_clip_emb.ndim == 4: |
|
vision_clip_emb = rearrange(vision_clip_emb, "b t n q-> (b t) n q") |
|
|
|
|
|
if self.need_spatial_position_emb: |
|
|
|
spatial_position_emb = get_2d_sincos_pos_embed( |
|
embed_dim=self.spatial_position_input_dim, |
|
grid_size_w=width, |
|
grid_size_h=height, |
|
cls_token=False, |
|
norm_length=self.norm_spatial_length, |
|
max_length=self.spatial_max_length, |
|
) |
|
spatial_position_emb = torch.from_numpy(spatial_position_emb).to( |
|
device=sample.device, dtype=self.dtype |
|
) |
|
|
|
spatial_position_emb = self.spatial_position_embedding(spatial_position_emb) |
|
else: |
|
spatial_position_emb = None |
|
|
|
|
|
if ( |
|
self.need_t2i_ip_adapter |
|
or self.ip_adapter_cross_attn |
|
or self.need_t2i_facein |
|
or self.need_t2i_ip_adapter_face |
|
): |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
cross_attention_kwargs["num_frames"] = num_frames |
|
cross_attention_kwargs[ |
|
"do_classifier_free_guidance" |
|
] = do_classifier_free_guidance |
|
cross_attention_kwargs["sample_index"] = sample_index |
|
cross_attention_kwargs[ |
|
"vision_conditon_frames_sample_index" |
|
] = vision_conditon_frames_sample_index |
|
if self.ip_adapter_cross_attn: |
|
cross_attention_kwargs["vision_clip_emb"] = vision_clip_emb |
|
cross_attention_kwargs["ip_adapter_scale"] = ip_adapter_scale |
|
if self.need_t2i_facein: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"face_emb={type(face_emb)}, facein_scale={facein_scale}" |
|
) |
|
cross_attention_kwargs["face_emb"] = face_emb |
|
cross_attention_kwargs["facein_scale"] = facein_scale |
|
if self.need_t2i_ip_adapter_face: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"ip_adapter_face_emb={type(ip_adapter_face_emb)}, ip_adapter_face_scale={ip_adapter_face_scale}" |
|
) |
|
cross_attention_kwargs["ip_adapter_face_emb"] = ip_adapter_face_emb |
|
cross_attention_kwargs["ip_adapter_face_scale"] = ip_adapter_face_scale |
|
|
|
sample = rearrange(sample, "b c t h w -> (b t) c h w") |
|
sample = self.conv_in(sample) |
|
|
|
if pose_guider_emb is not None: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"sample={sample.shape}, pose_guider_emb={pose_guider_emb.shape}" |
|
) |
|
sample = sample + pose_guider_emb |
|
|
|
if self.print_idx == 0: |
|
logger.debug(f"after conv in sample={sample.mean()}") |
|
if spatial_position_emb is not None: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"unet3d, transformer_in, spatial_position_emb={spatial_position_emb.shape}" |
|
) |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"unet vision_conditon_frames_sample_index, {type(vision_conditon_frames_sample_index)}", |
|
) |
|
if vision_conditon_frames_sample_index is not None: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"vision_conditon_frames_sample_index shape {vision_conditon_frames_sample_index.shape}", |
|
) |
|
if self.print_idx == 0: |
|
logger.debug(f"unet sample_index {type(sample_index)}") |
|
if sample_index is not None: |
|
if self.print_idx == 0: |
|
logger.debug(f"sample_index shape {sample_index.shape}") |
|
if self.need_transformer_in: |
|
if self.print_idx == 0: |
|
logger.debug(f"unet3d, transformer_in, sample={sample.shape}") |
|
sample = self.transformer_in( |
|
sample, |
|
femb=femb, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
).sample |
|
if ( |
|
self.need_refer_emb |
|
and down_block_refer_embs is not None |
|
and not self.skip_refer_downblock_emb |
|
): |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"self.first_refer_emb_attns, {self.first_refer_emb_attns.__class__.__name__} {down_block_refer_embs[0].shape}" |
|
) |
|
sample = self.first_refer_emb_attns( |
|
sample, down_block_refer_embs[0], num_frames=num_frames |
|
) |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"first_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, down_block_refer_embs, {down_block_refer_embs[0].is_leaf}, {down_block_refer_embs[0].requires_grad}," |
|
) |
|
else: |
|
if self.print_idx == 0: |
|
logger.debug(f"first_refer_emb_attns, no this step") |
|
|
|
|
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for i_down_block, downsample_block in enumerate(self.down_blocks): |
|
|
|
|
|
if ( |
|
not self.need_refer_emb |
|
or down_block_refer_embs is None |
|
or self.skip_refer_downblock_emb |
|
): |
|
this_down_block_refer_embs = None |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"{i_down_block}, prepare this_down_block_refer_embs, is None" |
|
) |
|
else: |
|
is_final_block = i_down_block == len(self.block_out_channels) - 1 |
|
num_block = self.layers_per_block + int(not is_final_block * 1) |
|
this_downblock_start_idx = 1 + num_block * i_down_block |
|
this_down_block_refer_embs = down_block_refer_embs[ |
|
this_downblock_start_idx : this_downblock_start_idx + num_block |
|
] |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"prepare this_down_block_refer_embs, {len(this_down_block_refer_embs)}, {this_down_block_refer_embs[0].shape}" |
|
) |
|
if self.print_idx == 0: |
|
logger.debug(f"downsample_block {i_down_block}, sample={sample.mean()}") |
|
if ( |
|
hasattr(downsample_block, "has_cross_attention") |
|
and downsample_block.has_cross_attention |
|
): |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
femb=femb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
refer_embs=this_down_block_refer_embs, |
|
refer_self_attn_emb=refer_self_attn_emb, |
|
refer_self_attn_emb_mode=refer_self_attn_emb_mode, |
|
) |
|
else: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
femb=femb, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
refer_embs=this_down_block_refer_embs, |
|
refer_self_attn_emb=refer_self_attn_emb, |
|
refer_self_attn_emb_mode=refer_self_attn_emb_mode, |
|
) |
|
|
|
|
|
if self.need_spatial_position_emb: |
|
has_downblock = i_down_block < len(self.down_blocks) - 1 |
|
if has_downblock: |
|
spatial_position_emb = resize_spatial_position_emb( |
|
spatial_position_emb, |
|
scale=0.5, |
|
height=sample.shape[2] * 2, |
|
width=sample.shape[3] * 2, |
|
) |
|
down_block_res_samples += res_samples |
|
if down_block_additional_residuals is not None: |
|
new_down_block_res_samples = () |
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = ( |
|
down_block_res_sample + down_block_additional_residual |
|
) |
|
new_down_block_res_samples += (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
sample = self.mid_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
femb=femb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
refer_self_attn_emb=refer_self_attn_emb, |
|
refer_self_attn_emb_mode=refer_self_attn_emb_mode, |
|
) |
|
|
|
|
|
if ( |
|
self.mid_block_refer_emb_attns is not None |
|
and mid_block_refer_emb is not None |
|
and not self.skip_refer_downblock_emb |
|
): |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"self.mid_block_refer_emb_attns={self.mid_block_refer_emb_attns}, mid_block_refer_emb={mid_block_refer_emb.shape}" |
|
) |
|
sample = self.mid_block_refer_emb_attns( |
|
sample, mid_block_refer_emb, num_frames=num_frames |
|
) |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"mid_block_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, mid_block_refer_emb, {mid_block_refer_emb[0].is_leaf}, {mid_block_refer_emb[0].requires_grad}," |
|
) |
|
else: |
|
if self.print_idx == 0: |
|
logger.debug(f"mid_block_refer_emb_attns, no this step") |
|
if mid_block_additional_residual is not None: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for i_up_block, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i_up_block == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[ |
|
: -len(upsample_block.resnets) |
|
] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if ( |
|
hasattr(upsample_block, "has_cross_attention") |
|
and upsample_block.has_cross_attention |
|
): |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
femb=femb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
refer_self_attn_emb=refer_self_attn_emb, |
|
refer_self_attn_emb_mode=refer_self_attn_emb_mode, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
femb=femb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
refer_self_attn_emb=refer_self_attn_emb, |
|
refer_self_attn_emb_mode=refer_self_attn_emb_mode, |
|
) |
|
|
|
if self.need_spatial_position_emb: |
|
has_upblock = i_up_block < len(self.up_blocks) - 1 |
|
if has_upblock: |
|
spatial_position_emb = resize_spatial_position_emb( |
|
spatial_position_emb, |
|
scale=2, |
|
height=int(sample.shape[2] / 2), |
|
width=int(sample.shape[3] / 2), |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
|
|
sample = self.conv_out(sample) |
|
sample = rearrange(sample, "(b t) c h w -> b c t h w", t=num_frames) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.print_idx += 1 |
|
|
|
if skip_temporal_layers is not None: |
|
self.set_skip_temporal_layers(not skip_temporal_layers) |
|
if not return_dict: |
|
return (sample,) |
|
else: |
|
return UNet3DConditionOutput(sample=sample) |
|
|
|
|
|
@classmethod |
|
def from_pretrained_2d( |
|
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs |
|
): |
|
r""" |
|
Instantiate a pretrained pytorch model from a pre-trained model configuration. |
|
|
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train |
|
the model, you should first set it back in training mode with `model.train()`. |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `diffusers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
from_flax (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a Flax checkpoint save file. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
|
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be refined to each |
|
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the |
|
same device. |
|
|
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This |
|
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the |
|
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, |
|
setting this argument to `True` will raise an error. |
|
variant (`str`, *optional*): |
|
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is |
|
ignored when using `from_flax`. |
|
use_safetensors (`bool`, *optional* ): |
|
If set to `True`, the pipeline will forcibly load the models from `safetensors` weights. If set to |
|
`None` (the default). The pipeline will load using `safetensors` if safetensors weights are available |
|
*and* if `safetensors` is installed. If the to `False` the pipeline will *not* use `safetensors`. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
|
|
</Tip> |
|
|
|
<Tip> |
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use |
|
this method in a firewalled environment. |
|
|
|
</Tip> |
|
|
|
""" |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) |
|
force_download = kwargs.pop("force_download", False) |
|
from_flax = kwargs.pop("from_flax", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
device_map = kwargs.pop("device_map", None) |
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) |
|
variant = kwargs.pop("variant", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
strict = kwargs.pop("strict", True) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
allow_pickle = True |
|
|
|
if low_cpu_mem_usage and not is_accelerate_available(): |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if device_map is not None and not is_accelerate_available(): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" |
|
" `device_map=None`. You can install accelerate with `pip install accelerate`." |
|
) |
|
|
|
|
|
if device_map is not None and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `device_map=None`." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
if low_cpu_mem_usage is False and device_map is not None: |
|
raise ValueError( |
|
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" |
|
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." |
|
) |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
user_agent = { |
|
"diffusers": __version__, |
|
"file_type": "model", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
config, unused_kwargs, commit_hash = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
device_map=device_map, |
|
user_agent=user_agent, |
|
**kwargs, |
|
) |
|
|
|
config["_class_name"] = cls.__name__ |
|
config["down_block_types"] = convert_2D_to_3D(config["down_block_types"]) |
|
if "mid_block_type" in config: |
|
config["mid_block_type"] = convert_2D_to_3D(config["mid_block_type"]) |
|
else: |
|
config["mid_block_type"] = "UNetMidBlock3DCrossAttn" |
|
config["up_block_types"] = convert_2D_to_3D(config["up_block_types"]) |
|
|
|
|
|
model_file = None |
|
if from_flax: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=FLAX_WEIGHTS_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
from diffusers.models.modeling_pytorch_flax_utils import ( |
|
load_flax_checkpoint_in_pytorch_model, |
|
) |
|
|
|
model = load_flax_checkpoint_in_pytorch_model(model, model_file) |
|
else: |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
except IOError as e: |
|
if not allow_pickle: |
|
raise e |
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
if low_cpu_mem_usage: |
|
|
|
with accelerate.init_empty_weights(): |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
if device_map is None: |
|
param_device = "cpu" |
|
state_dict = load_state_dict(model_file, variant=variant) |
|
|
|
missing_keys = set(model.state_dict().keys()) - set( |
|
state_dict.keys() |
|
) |
|
if len(missing_keys) > 0: |
|
if strict: |
|
raise ValueError( |
|
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" |
|
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" |
|
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" |
|
" those weights or else make sure your checkpoint file is correct." |
|
) |
|
else: |
|
logger.warning( |
|
f"model{cls} has no target pretrained paramter from {pretrained_model_name_or_path}, {', '.join(missing_keys)}" |
|
) |
|
|
|
empty_state_dict = model.state_dict() |
|
for param_name, param in state_dict.items(): |
|
accepts_dtype = "dtype" in set( |
|
inspect.signature( |
|
set_module_tensor_to_device |
|
).parameters.keys() |
|
) |
|
|
|
if empty_state_dict[param_name].shape != param.shape: |
|
raise ValueError( |
|
f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example." |
|
) |
|
|
|
if accepts_dtype: |
|
set_module_tensor_to_device( |
|
model, |
|
param_name, |
|
param_device, |
|
value=param, |
|
dtype=torch_dtype, |
|
) |
|
else: |
|
set_module_tensor_to_device( |
|
model, param_name, param_device, value=param |
|
) |
|
else: |
|
|
|
|
|
accelerate.load_checkpoint_and_dispatch( |
|
model, model_file, device_map, dtype=torch_dtype |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": [], |
|
"unexpected_keys": [], |
|
"mismatched_keys": [], |
|
"error_msgs": [], |
|
} |
|
else: |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
state_dict = load_state_dict(model_file, variant=variant) |
|
|
|
( |
|
model, |
|
missing_keys, |
|
unexpected_keys, |
|
mismatched_keys, |
|
error_msgs, |
|
) = cls._load_pretrained_model( |
|
model, |
|
state_dict, |
|
model_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
"error_msgs": error_msgs, |
|
} |
|
|
|
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." |
|
) |
|
elif torch_dtype is not None: |
|
model = model.to(torch_dtype) |
|
|
|
model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
|
|
|
|
|
model.eval() |
|
if output_loading_info: |
|
return model, loading_info |
|
|
|
return model |
|
|
|
def set_skip_temporal_layers( |
|
self, |
|
valid: bool, |
|
) -> None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "skip_temporal_layers"): |
|
module.skip_temporal_layers = valid |
|
|
|
|
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
for module in self.children(): |
|
if isinstance(module, torch.nn.Module): |
|
fn_recursive_set_mem_eff(module) |
|
|
|
def insert_spatial_self_attn_idx(self): |
|
attns, basic_transformers = self.spatial_self_attns |
|
self.self_attn_num = len(attns) |
|
for i, (name, layer) in enumerate(attns): |
|
logger.debug( |
|
f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" |
|
) |
|
layer.spatial_self_attn_idx = i |
|
for i, (name, layer) in enumerate(basic_transformers): |
|
logger.debug( |
|
f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" |
|
) |
|
layer.spatial_self_attn_idx = i |
|
|
|
@property |
|
def spatial_self_attns( |
|
self, |
|
) -> List[Tuple[str, Attention]]: |
|
attns, spatial_transformers = self.get_attns( |
|
include="attentions", exclude="temp_attentions", attn_name="attn1" |
|
) |
|
attns = sorted(attns) |
|
spatial_transformers = sorted(spatial_transformers) |
|
return attns, spatial_transformers |
|
|
|
@property |
|
def spatial_cross_attns( |
|
self, |
|
) -> List[Tuple[str, Attention]]: |
|
attns, spatial_transformers = self.get_attns( |
|
include="attentions", exclude="temp_attentions", attn_name="attn2" |
|
) |
|
attns = sorted(attns) |
|
spatial_transformers = sorted(spatial_transformers) |
|
return attns, spatial_transformers |
|
|
|
def get_attns( |
|
self, |
|
attn_name: str, |
|
include: str = None, |
|
exclude: str = None, |
|
) -> List[Tuple[str, Attention]]: |
|
r""" |
|
Returns: |
|
`dict` of attention attns: A dictionary containing all attention attns used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
attns = [] |
|
spatial_transformers = [] |
|
|
|
def fn_recursive_add_attns( |
|
name: str, |
|
module: torch.nn.Module, |
|
attns: List[Tuple[str, Attention]], |
|
spatial_transformers: List[Tuple[str, BasicTransformerBlock]], |
|
): |
|
is_target = False |
|
if isinstance(module, BasicTransformerBlock) and hasattr(module, attn_name): |
|
is_target = True |
|
if include is not None: |
|
is_target = include in name |
|
if exclude is not None: |
|
is_target = exclude not in name |
|
if is_target: |
|
attns.append([f"{name}.{attn_name}", getattr(module, attn_name)]) |
|
spatial_transformers.append([f"{name}", module]) |
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_attns( |
|
f"{name}.{sub_name}", child, attns, spatial_transformers |
|
) |
|
|
|
return attns |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_attns(name, module, attns, spatial_transformers) |
|
|
|
return attns, spatial_transformers |
|
|