|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from numpy import ndarray |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.schedulers.scheduling_lcm import ( |
|
LCMSchedulerOutput, |
|
betas_for_alpha_bar, |
|
rescale_zero_terminal_snr, |
|
LCMScheduler as DiffusersLCMScheduler, |
|
) |
|
from ..utils.noise_util import video_fusion_noise |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class LCMScheduler(DiffusersLCMScheduler): |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.00085, |
|
beta_end: float = 0.012, |
|
beta_schedule: str = "scaled_linear", |
|
trained_betas: ndarray | List[float] | None = None, |
|
original_inference_steps: int = 50, |
|
clip_sample: bool = False, |
|
clip_sample_range: float = 1, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1, |
|
timestep_spacing: str = "leading", |
|
timestep_scaling: float = 10, |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
super().__init__( |
|
num_train_timesteps, |
|
beta_start, |
|
beta_end, |
|
beta_schedule, |
|
trained_betas, |
|
original_inference_steps, |
|
clip_sample, |
|
clip_sample_range, |
|
set_alpha_to_one, |
|
steps_offset, |
|
prediction_type, |
|
thresholding, |
|
dynamic_thresholding_ratio, |
|
sample_max_value, |
|
timestep_spacing, |
|
timestep_scaling, |
|
rescale_betas_zero_snr, |
|
) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
noise_type: str = "random", |
|
) -> Union[LCMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
prev_step_index = self.step_index + 1 |
|
if prev_step_index < len(self.timesteps): |
|
prev_timestep = self.timesteps[prev_step_index] |
|
else: |
|
prev_timestep = timestep |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
self.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
predicted_original_sample = ( |
|
sample - beta_prod_t.sqrt() * model_output |
|
) / alpha_prod_t.sqrt() |
|
elif self.config.prediction_type == "sample": |
|
predicted_original_sample = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
predicted_original_sample = ( |
|
alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output |
|
) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" |
|
" `v_prediction` for `LCMScheduler`." |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
predicted_original_sample = self._threshold_sample( |
|
predicted_original_sample |
|
) |
|
elif self.config.clip_sample: |
|
predicted_original_sample = predicted_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
denoised = c_out * predicted_original_sample + c_skip * sample |
|
|
|
|
|
|
|
|
|
device = model_output.device |
|
|
|
if self.step_index != self.num_inference_steps - 1: |
|
if noise_type == "random": |
|
noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
elif noise_type == "video_fusion": |
|
noise = video_fusion_noise( |
|
model_output, w_ind_noise=w_ind_noise, generator=generator |
|
) |
|
prev_sample = ( |
|
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise |
|
) |
|
else: |
|
prev_sample = denoised |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample, denoised) |
|
|
|
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) |
|
|
|
def step_bk( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[LCMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
prev_step_index = self.step_index + 1 |
|
if prev_step_index < len(self.timesteps): |
|
prev_timestep = self.timesteps[prev_step_index] |
|
else: |
|
prev_timestep = timestep |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
self.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
predicted_original_sample = ( |
|
sample - beta_prod_t.sqrt() * model_output |
|
) / alpha_prod_t.sqrt() |
|
elif self.config.prediction_type == "sample": |
|
predicted_original_sample = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
predicted_original_sample = ( |
|
alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output |
|
) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" |
|
" `v_prediction` for `LCMScheduler`." |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
predicted_original_sample = self._threshold_sample( |
|
predicted_original_sample |
|
) |
|
elif self.config.clip_sample: |
|
predicted_original_sample = predicted_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
denoised = c_out * predicted_original_sample + c_skip * sample |
|
|
|
|
|
|
|
|
|
if self.step_index != self.num_inference_steps - 1: |
|
noise = randn_tensor( |
|
model_output.shape, |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=denoised.dtype, |
|
) |
|
prev_sample = ( |
|
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise |
|
) |
|
else: |
|
prev_sample = denoised |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample, denoised) |
|
|
|
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) |
|
|