|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
|
try: |
|
from diffusers.utils import randn_tensor |
|
except: |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import ( |
|
KarrasDiffusionSchedulers, |
|
SchedulerMixin, |
|
SchedulerOutput, |
|
) |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with |
|
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality |
|
samples, and it can generate quite good samples even in only 10 steps. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 |
|
|
|
Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We |
|
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. |
|
|
|
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space |
|
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic |
|
thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as |
|
stable-diffusion). |
|
|
|
We also support the SDE variant of DPM-Solver and DPM-Solver++, which is a fast SDE solver for the reverse |
|
diffusion SDE. Currently we only support the first-order and second-order solvers. We recommend using the |
|
second-order `sde-dpmsolver++`. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
solver_order (`int`, default `2`): |
|
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided |
|
sampling, and `solver_order=3` for unconditional sampling. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
thresholding (`bool`, default `False`): |
|
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). |
|
For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to |
|
use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion |
|
models (such as stable-diffusion). |
|
dynamic_thresholding_ratio (`float`, default `0.995`): |
|
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen |
|
(https://arxiv.org/abs/2205.11487). |
|
sample_max_value (`float`, default `1.0`): |
|
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and |
|
`algorithm_type="dpmsolver++`. |
|
algorithm_type (`str`, default `dpmsolver++`): |
|
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++` or `sde-dpmsolver` or |
|
`sde-dpmsolver++`. The `dpmsolver` type implements the algorithms in https://arxiv.org/abs/2206.00927, and |
|
the `dpmsolver++` type implements the algorithms in https://arxiv.org/abs/2211.01095. We recommend to use |
|
`dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling (e.g. stable-diffusion). |
|
solver_type (`str`, default `midpoint`): |
|
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects |
|
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are |
|
slightly better, so we recommend to use the `midpoint` type. |
|
lower_order_final (`bool`, default `True`): |
|
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically |
|
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the |
|
noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence |
|
of noise levels {Οi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf. |
|
lambda_min_clipped (`float`, default `-inf`): |
|
the clipping threshold for the minimum value of lambda(t) for numerical stability. This is critical for |
|
cosine (squaredcos_cap_v2) noise schedule. |
|
variance_type (`str`, *optional*): |
|
Set to "learned" or "learned_range" for diffusion models that predict variance. For example, OpenAI's |
|
guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the |
|
Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on |
|
diffusion ODEs. whether the model's output contains the predicted Gaussian variance. For example, OpenAI's |
|
guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the |
|
Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on |
|
diffusion ODEs. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
solver_order: int = 2, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "dpmsolver++", |
|
solver_type: str = "midpoint", |
|
lower_order_final: bool = True, |
|
use_karras_sigmas: Optional[bool] = True, |
|
lambda_min_clipped: float = -float("inf"), |
|
variance_type: Optional[str] = None, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace( |
|
beta_start, beta_end, num_train_timesteps, dtype=torch.float32 |
|
) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace( |
|
beta_start**0.5, |
|
beta_end**0.5, |
|
num_train_timesteps, |
|
dtype=torch.float32, |
|
) |
|
** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError( |
|
f"{beta_schedule} does is not implemented for {self.__class__}" |
|
) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
if algorithm_type not in [ |
|
"dpmsolver", |
|
"dpmsolver++", |
|
"sde-dpmsolver", |
|
"sde-dpmsolver++", |
|
]: |
|
if algorithm_type == "deis": |
|
self.register_to_config(algorithm_type="dpmsolver++") |
|
else: |
|
raise NotImplementedError( |
|
f"{algorithm_type} does is not implemented for {self.__class__}" |
|
) |
|
|
|
if solver_type not in ["midpoint", "heun"]: |
|
if solver_type in ["logrho", "bh1", "bh2"]: |
|
self.register_to_config(solver_type="midpoint") |
|
else: |
|
raise NotImplementedError( |
|
f"{solver_type} does is not implemented for {self.__class__}" |
|
) |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace( |
|
0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32 |
|
)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.model_outputs = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self.use_karras_sigmas = use_karras_sigmas |
|
|
|
def set_timesteps( |
|
self, num_inference_steps: int = None, device: Union[str, torch.device] = None |
|
): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
|
|
clipped_idx = torch.searchsorted( |
|
torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped |
|
) |
|
timesteps = ( |
|
np.linspace( |
|
0, |
|
self.config.num_train_timesteps - 1 - clipped_idx, |
|
num_inference_steps + 1, |
|
) |
|
.round()[::-1][:-1] |
|
.copy() |
|
.astype(np.int64) |
|
) |
|
|
|
if self.use_karras_sigmas: |
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
log_sigmas = np.log(sigmas) |
|
sigmas = self._convert_to_karras( |
|
in_sigmas=sigmas, num_inference_steps=num_inference_steps |
|
) |
|
timesteps = np.array( |
|
[self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas] |
|
).round() |
|
timesteps = np.flip(timesteps).copy().astype(np.int64) |
|
|
|
|
|
|
|
_, unique_indices = np.unique(timesteps, return_index=True) |
|
timesteps = timesteps[np.sort(unique_indices)] |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
self.num_inference_steps = len(timesteps) |
|
|
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
|
|
|
|
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
|
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, height, width = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = ( |
|
sample.float() |
|
) |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * height * width) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
|
|
s = s.unsqueeze(1) |
|
sample = ( |
|
torch.clamp(sample, -s, s) / s |
|
) |
|
|
|
sample = sample.reshape(batch_size, channels, height, width) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(sigma) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = ( |
|
np.cumsum((dists >= 0), axis=0) |
|
.argmax(axis=0) |
|
.clip(max=log_sigmas.shape[0] - 2) |
|
) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
|
|
def _convert_to_karras( |
|
self, in_sigmas: torch.FloatTensor, num_inference_steps |
|
) -> torch.FloatTensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
sigma_min: float = in_sigmas[-1].item() |
|
sigma_max: float = in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def convert_model_output( |
|
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor |
|
) -> torch.FloatTensor: |
|
""" |
|
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. |
|
|
|
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to |
|
discretize an integral of the data prediction model. So we need to first convert the model output to the |
|
corresponding type to match the algorithm. |
|
|
|
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or |
|
DPM-Solver++ for both noise prediction model and data prediction model. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the converted model output. |
|
""" |
|
|
|
|
|
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
model_output = model_output[:, :3] |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
|
|
|
|
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
epsilon = model_output[:, :3] |
|
else: |
|
epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
epsilon = (sample - alpha_t * model_output) / sigma_t |
|
elif self.config.prediction_type == "v_prediction": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
epsilon = alpha_t * model_output + sigma_t * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = (sample - sigma_t * epsilon) / alpha_t |
|
x0_pred = self._threshold_sample(x0_pred) |
|
epsilon = (sample - alpha_t * x0_pred) / sigma_t |
|
|
|
return epsilon |
|
|
|
def dpm_solver_first_order_update( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
noise: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the first-order DPM-Solver (equivalent to DDIM). |
|
|
|
See https://arxiv.org/abs/2206.00927 for the detailed derivation. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] |
|
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] |
|
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] |
|
h = lambda_t - lambda_s |
|
if self.config.algorithm_type == "dpmsolver++": |
|
x_t = (sigma_t / sigma_s) * sample - ( |
|
alpha_t * (torch.exp(-h) - 1.0) |
|
) * model_output |
|
elif self.config.algorithm_type == "dpmsolver": |
|
x_t = (alpha_t / alpha_s) * sample - ( |
|
sigma_t * (torch.exp(h) - 1.0) |
|
) * model_output |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
x_t = ( |
|
(sigma_t / sigma_s * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
x_t = ( |
|
(alpha_t / alpha_s) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
return x_t |
|
|
|
def multistep_dpm_solver_second_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
timestep_list: List[int], |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
noise: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the second-order multistep DPM-Solver. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
direct outputs from learned diffusion model at current and latter timesteps. |
|
timestep (`int`): current and latter discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] |
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
lambda_t, lambda_s0, lambda_s1 = ( |
|
self.lambda_t[t], |
|
self.lambda_t[s0], |
|
self.lambda_t[s1], |
|
) |
|
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] |
|
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] |
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 |
|
) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise |
|
) |
|
return x_t |
|
|
|
def multistep_dpm_solver_third_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
timestep_list: List[int], |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the third-order multistep DPM-Solver. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
direct outputs from learned diffusion model at current and latter timesteps. |
|
timestep (`int`): current and latter discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
t, s0, s1, s2 = ( |
|
prev_timestep, |
|
timestep_list[-1], |
|
timestep_list[-2], |
|
timestep_list[-3], |
|
) |
|
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] |
|
lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( |
|
self.lambda_t[t], |
|
self.lambda_t[s0], |
|
self.lambda_t[s1], |
|
self.lambda_t[s2], |
|
) |
|
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] |
|
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] |
|
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 |
|
r0, r1 = h_0 / h, h_1 / h |
|
D0 = m0 |
|
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) |
|
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) |
|
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
x_t = ( |
|
(sigma_t / sigma_s0) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 |
|
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 |
|
) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
x_t = ( |
|
(alpha_t / alpha_s0) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 |
|
) |
|
return x_t |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Step function propagating the sample with the multistep DPM-Solver. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
step_index = (self.timesteps == timestep).nonzero() |
|
if len(step_index) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
else: |
|
step_index = step_index.item() |
|
prev_timestep = ( |
|
0 |
|
if step_index == len(self.timesteps) - 1 |
|
else self.timesteps[step_index + 1] |
|
) |
|
lower_order_final = ( |
|
(step_index == len(self.timesteps) - 1) |
|
and self.config.lower_order_final |
|
and len(self.timesteps) < 15 |
|
) |
|
lower_order_second = ( |
|
(step_index == len(self.timesteps) - 2) |
|
and self.config.lower_order_final |
|
and len(self.timesteps) < 15 |
|
) |
|
|
|
model_output = self.convert_model_output(model_output, timestep, sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: |
|
|
|
|
|
|
|
common_noise = torch.randn( |
|
model_output.shape[:2] + (1,) + model_output.shape[3:], |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=model_output.dtype, |
|
) |
|
ind_noise = randn_tensor( |
|
model_output.shape, |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=model_output.dtype, |
|
) |
|
s = torch.tensor( |
|
w_ind_noise, device=model_output.device, dtype=model_output.dtype |
|
).to(device) |
|
noise = torch.sqrt(1 - s) * common_noise + torch.sqrt(s) * ind_noise |
|
|
|
else: |
|
noise = None |
|
|
|
if ( |
|
self.config.solver_order == 1 |
|
or self.lower_order_nums < 1 |
|
or lower_order_final |
|
): |
|
prev_sample = self.dpm_solver_first_order_update( |
|
model_output, timestep, prev_timestep, sample, noise=noise |
|
) |
|
elif ( |
|
self.config.solver_order == 2 |
|
or self.lower_order_nums < 2 |
|
or lower_order_second |
|
): |
|
timestep_list = [self.timesteps[step_index - 1], timestep] |
|
prev_sample = self.multistep_dpm_solver_second_order_update( |
|
self.model_outputs, timestep_list, prev_timestep, sample, noise=noise |
|
) |
|
else: |
|
timestep_list = [ |
|
self.timesteps[step_index - 2], |
|
self.timesteps[step_index - 1], |
|
timestep, |
|
] |
|
prev_sample = self.multistep_dpm_solver_third_order_update( |
|
self.model_outputs, timestep_list, prev_timestep, sample |
|
) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, *args, **kwargs |
|
) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
alphas_cumprod = self.alphas_cumprod.to( |
|
device=original_samples.device, dtype=original_samples.dtype |
|
) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = ( |
|
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
) |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|