|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Literal, Optional, Tuple, Union |
|
import logging |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.utils import is_torch_version |
|
from diffusers.models.transformer_2d import ( |
|
Transformer2DModel as DiffusersTransformer2DModel, |
|
) |
|
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D |
|
from ..data.data_util import batch_adain_conditioned_tensor |
|
|
|
from .resnet import TemporalConvLayer |
|
from .temporal_transformer import TransformerTemporalModel |
|
from .transformer_2d import Transformer2DModel |
|
from .attention_processor import ReferEmbFuseAttention |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_down_block( |
|
down_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
temb_channels, |
|
femb_channels, |
|
add_downsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
downsample_padding=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
need_spatial_position_emb: bool = False, |
|
need_t2i_ip_adapter: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
need_refer_emb: bool = False, |
|
): |
|
if (isinstance(down_block_type, str) and down_block_type == "DownBlock3D") or ( |
|
isinstance(down_block_type, nn.Module) |
|
and down_block_type.__name__ == "DownBlock3D" |
|
): |
|
return DownBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
femb_channels=femb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temporal_conv_block=temporal_conv_block, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
need_refer_emb=need_refer_emb, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif ( |
|
isinstance(down_block_type, str) and down_block_type == "CrossAttnDownBlock3D" |
|
) or ( |
|
isinstance(down_block_type, nn.Module) |
|
and down_block_type.__name__ == "CrossAttnDownBlock3D" |
|
): |
|
if cross_attention_dim is None: |
|
raise ValueError( |
|
"cross_attention_dim must be specified for CrossAttnDownBlock3D" |
|
) |
|
return CrossAttnDownBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
femb_channels=femb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temporal_conv_block=temporal_conv_block, |
|
temporal_transformer=temporal_transformer, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
need_t2i_ip_adapter=need_t2i_ip_adapter, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
need_refer_emb=need_refer_emb, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
prev_output_channel, |
|
temb_channels, |
|
femb_channels, |
|
add_upsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, |
|
need_spatial_position_emb: bool = False, |
|
need_t2i_ip_adapter: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
): |
|
if (isinstance(up_block_type, str) and up_block_type == "UpBlock3D") or ( |
|
isinstance(up_block_type, nn.Module) and up_block_type.__name__ == "UpBlock3D" |
|
): |
|
return UpBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
femb_channels=femb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temporal_conv_block=temporal_conv_block, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
elif (isinstance(up_block_type, str) and up_block_type == "CrossAttnUpBlock3D") or ( |
|
isinstance(up_block_type, nn.Module) |
|
and up_block_type.__name__ == "CrossAttnUpBlock3D" |
|
): |
|
if cross_attention_dim is None: |
|
raise ValueError( |
|
"cross_attention_dim must be specified for CrossAttnUpBlock3D" |
|
) |
|
return CrossAttnUpBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
femb_channels=femb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temporal_conv_block=temporal_conv_block, |
|
temporal_transformer=temporal_transformer, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
need_t2i_ip_adapter=need_t2i_ip_adapter, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
need_adain_temporal_cond=need_adain_temporal_cond, |
|
resnet_2d_skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class UNetMidBlock3DCrossAttn(nn.Module): |
|
print_idx = 0 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
femb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
output_scale_factor=1.0, |
|
cross_attention_dim=1280, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
upcast_attention=False, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, |
|
need_spatial_position_emb: bool = False, |
|
need_t2i_ip_adapter: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
resnet_groups = ( |
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
) |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
] |
|
if temporal_conv_block is not None: |
|
temp_convs = [ |
|
temporal_conv_block( |
|
in_channels, |
|
in_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
] |
|
else: |
|
temp_convs = [None] |
|
attentions = [] |
|
temp_attentions = [] |
|
|
|
for _ in range(num_layers): |
|
attentions.append( |
|
Transformer2DModel( |
|
attn_num_head_channels, |
|
in_channels // attn_num_head_channels, |
|
in_channels=in_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
cross_attn_temporal_cond=need_t2i_ip_adapter, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
) |
|
) |
|
if temporal_transformer is not None: |
|
temp_attention = temporal_transformer( |
|
attn_num_head_channels, |
|
in_channels // attn_num_head_channels, |
|
in_channels=in_channels, |
|
num_layers=1, |
|
femb_channels=femb_channels, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
) |
|
else: |
|
temp_attention = None |
|
temp_attentions.append(temp_attention) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
) |
|
if temporal_conv_block is not None: |
|
temp_convs.append( |
|
temporal_conv_block( |
|
in_channels, |
|
in_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
) |
|
else: |
|
temp_convs.append(None) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.temp_attentions = nn.ModuleList(temp_attentions) |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
temb=None, |
|
femb=None, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
num_frames=1, |
|
cross_attention_kwargs=None, |
|
sample_index: torch.LongTensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
spatial_position_emb: torch.Tensor = None, |
|
refer_self_attn_emb: List[torch.Tensor] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
if self.temp_convs[0] is not None: |
|
hidden_states = self.temp_convs[0]( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
for attn, temp_attn, resnet, temp_conv in zip( |
|
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:] |
|
): |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
self_attn_block_embs=refer_self_attn_emb, |
|
self_attn_block_embs_mode=refer_self_attn_emb_mode, |
|
).sample |
|
if temp_attn is not None: |
|
hidden_states = temp_attn( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
).sample |
|
hidden_states = resnet(hidden_states, temb) |
|
if temp_conv is not None: |
|
hidden_states = temp_conv( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
self.print_idx += 1 |
|
return hidden_states |
|
|
|
|
|
class CrossAttnDownBlock3D(nn.Module): |
|
print_idx = 0 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
femb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, |
|
need_spatial_position_emb: bool = False, |
|
need_t2i_ip_adapter: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
need_refer_emb: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
temp_attentions = [] |
|
temp_convs = [] |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
self.need_refer_emb = need_refer_emb |
|
if need_refer_emb: |
|
refer_emb_attns = [] |
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
) |
|
if temporal_conv_block is not None: |
|
temp_convs.append( |
|
temporal_conv_block( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
) |
|
else: |
|
temp_convs.append(None) |
|
attentions.append( |
|
Transformer2DModel( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
cross_attn_temporal_cond=need_t2i_ip_adapter, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
) |
|
) |
|
if temporal_transformer is not None: |
|
temp_attention = temporal_transformer( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
femb_channels=femb_channels, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
) |
|
else: |
|
temp_attention = None |
|
temp_attentions.append(temp_attention) |
|
|
|
if need_refer_emb: |
|
refer_emb_attns.append( |
|
ReferEmbFuseAttention( |
|
query_dim=out_channels, |
|
heads=attn_num_head_channels, |
|
dim_head=out_channels // attn_num_head_channels, |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.temp_attentions = nn.ModuleList(temp_attentions) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, |
|
use_conv=True, |
|
out_channels=out_channels, |
|
padding=downsample_padding, |
|
name="op", |
|
) |
|
] |
|
) |
|
if need_refer_emb: |
|
refer_emb_attns.append( |
|
ReferEmbFuseAttention( |
|
query_dim=out_channels, |
|
heads=attn_num_head_channels, |
|
dim_head=out_channels // attn_num_head_channels, |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
if need_refer_emb: |
|
self.refer_emb_attns = nn.ModuleList(refer_emb_attns) |
|
logger.debug(f"cross attn downblock 3d need_refer_emb, {self.need_refer_emb}") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
femb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
num_frames: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
sample_index: torch.LongTensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
spatial_position_emb: torch.Tensor = None, |
|
refer_embs: Optional[List[torch.Tensor]] = None, |
|
refer_self_attn_emb: List[torch.Tensor] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
): |
|
|
|
output_states = () |
|
for i_downblock, (resnet, temp_conv, attn, temp_attn) in enumerate( |
|
zip(self.resnets, self.temp_convs, self.attentions, self.temp_attentions) |
|
): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"self.training and self.gradient_checkpointing={self.training and self.gradient_checkpointing}" |
|
) |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
if self.print_idx == 0: |
|
logger.debug(f"unet3d after resnet {hidden_states.mean()}") |
|
if temp_conv is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_conv), |
|
hidden_states, |
|
num_frames, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
femb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
refer_self_attn_emb, |
|
refer_self_attn_emb_mode, |
|
**ckpt_kwargs, |
|
)[0] |
|
if temp_attn is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_attn, return_dict=False), |
|
hidden_states, |
|
femb, |
|
|
|
encoder_hidden_states, |
|
None, |
|
None, |
|
num_frames, |
|
cross_attention_kwargs, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
spatial_position_emb, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
if self.print_idx == 0: |
|
logger.debug(f"unet3d after resnet {hidden_states.mean()}") |
|
if temp_conv is not None: |
|
hidden_states = temp_conv( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
self_attn_block_embs=refer_self_attn_emb, |
|
self_attn_block_embs_mode=refer_self_attn_emb_mode, |
|
).sample |
|
if temp_attn is not None: |
|
hidden_states = temp_attn( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
).sample |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
|
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"downblock, {i_downblock}, self.need_refer_emb={self.need_refer_emb}" |
|
) |
|
if self.need_refer_emb and refer_embs is not None: |
|
if self.print_idx == 0: |
|
logger.debug( |
|
f"{i_downblock}, self.refer_emb_attns {refer_embs[i_downblock].shape}" |
|
) |
|
hidden_states = self.refer_emb_attns[i_downblock]( |
|
hidden_states, refer_embs[i_downblock], num_frames=num_frames |
|
) |
|
else: |
|
if self.print_idx == 0: |
|
logger.debug(f"crossattndownblock refer_emb_attns, no this step") |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
|
|
|
|
|
|
if self.need_refer_emb and refer_embs is not None: |
|
i_downblock += 1 |
|
hidden_states = self.refer_emb_attns[i_downblock]( |
|
hidden_states, refer_embs[i_downblock], num_frames=num_frames |
|
) |
|
output_states += (hidden_states,) |
|
self.print_idx += 1 |
|
return hidden_states, output_states |
|
|
|
|
|
class DownBlock3D(nn.Module): |
|
print_idx = 0 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
femb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
downsample_padding=1, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
need_refer_emb: bool = False, |
|
attn_num_head_channels: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
temp_convs = [] |
|
self.need_refer_emb = need_refer_emb |
|
if need_refer_emb: |
|
refer_emb_attns = [] |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
) |
|
if temporal_conv_block is not None: |
|
temp_convs.append( |
|
temporal_conv_block( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
) |
|
else: |
|
temp_convs.append(None) |
|
if need_refer_emb: |
|
refer_emb_attns.append( |
|
ReferEmbFuseAttention( |
|
query_dim=out_channels, |
|
heads=attn_num_head_channels, |
|
dim_head=out_channels // attn_num_head_channels, |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, |
|
use_conv=True, |
|
out_channels=out_channels, |
|
padding=downsample_padding, |
|
name="op", |
|
) |
|
] |
|
) |
|
if need_refer_emb: |
|
refer_emb_attns.append( |
|
ReferEmbFuseAttention( |
|
query_dim=out_channels, |
|
heads=attn_num_head_channels, |
|
dim_head=out_channels // attn_num_head_channels, |
|
dropout=0, |
|
bias=False, |
|
cross_attention_dim=None, |
|
upcast_attention=False, |
|
) |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
if need_refer_emb: |
|
self.refer_emb_attns = nn.ModuleList(refer_emb_attns) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
temb=None, |
|
num_frames=1, |
|
sample_index: torch.LongTensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
spatial_position_emb: torch.Tensor = None, |
|
femb=None, |
|
refer_embs: Optional[Tuple[torch.Tensor]] = None, |
|
refer_self_attn_emb: List[torch.Tensor] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
): |
|
output_states = () |
|
|
|
for i_downblock, (resnet, temp_conv) in enumerate( |
|
zip(self.resnets, self.temp_convs) |
|
): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
if temp_conv is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_conv), |
|
hidden_states, |
|
num_frames, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
femb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
if temp_conv is not None: |
|
hidden_states = temp_conv( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
if self.need_refer_emb and refer_embs is not None: |
|
hidden_states = self.refer_emb_attns[i_downblock]( |
|
hidden_states, refer_embs[i_downblock], num_frames=num_frames |
|
) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
if self.need_refer_emb and refer_embs is not None: |
|
i_downblock += 1 |
|
hidden_states = self.refer_emb_attns[i_downblock]( |
|
hidden_states, refer_embs[i_downblock], num_frames=num_frames |
|
) |
|
output_states += (hidden_states,) |
|
self.print_idx += 1 |
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnUpBlock3D(nn.Module): |
|
print_idx = 0 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
femb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
temporal_transformer: Union[nn.Module, None] = TransformerTemporalModel, |
|
need_spatial_position_emb: bool = False, |
|
need_t2i_ip_adapter: bool = False, |
|
ip_adapter_cross_attn: bool = False, |
|
need_t2i_facein: bool = False, |
|
need_t2i_ip_adapter_face: bool = False, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
temp_convs = [] |
|
attentions = [] |
|
temp_attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
) |
|
if temporal_conv_block is not None: |
|
temp_convs.append( |
|
temporal_conv_block( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
) |
|
else: |
|
temp_convs.append(None) |
|
attentions.append( |
|
Transformer2DModel( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
cross_attn_temporal_cond=need_t2i_ip_adapter, |
|
ip_adapter_cross_attn=ip_adapter_cross_attn, |
|
need_t2i_facein=need_t2i_facein, |
|
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, |
|
) |
|
) |
|
if temporal_transformer is not None: |
|
temp_attention = temporal_transformer( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
femb_channels=femb_channels, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
need_spatial_position_emb=need_spatial_position_emb, |
|
) |
|
else: |
|
temp_attention = None |
|
temp_attentions.append(temp_attention) |
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.temp_attentions = nn.ModuleList(temp_attentions) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
femb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
num_frames: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
sample_index: torch.LongTensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
spatial_position_emb: torch.Tensor = None, |
|
refer_self_attn_emb: List[torch.Tensor] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
): |
|
for resnet, temp_conv, attn, temp_attn in zip( |
|
self.resnets, self.temp_convs, self.attentions, self.temp_attentions |
|
): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
if temp_conv is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_conv), |
|
hidden_states, |
|
num_frames, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
femb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
refer_self_attn_emb, |
|
refer_self_attn_emb_mode, |
|
**ckpt_kwargs, |
|
)[0] |
|
if temp_attn is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_attn, return_dict=False), |
|
hidden_states, |
|
femb, |
|
|
|
encoder_hidden_states, |
|
None, |
|
None, |
|
num_frames, |
|
cross_attention_kwargs, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
spatial_position_emb, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
if temp_conv is not None: |
|
hidden_states = temp_conv( |
|
hidden_states, |
|
num_frames=num_frames, |
|
femb=femb, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
self_attn_block_embs=refer_self_attn_emb, |
|
self_attn_block_embs_mode=refer_self_attn_emb_mode, |
|
).sample |
|
if temp_attn is not None: |
|
hidden_states = temp_attn( |
|
hidden_states, |
|
femb=femb, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_hidden_states=encoder_hidden_states, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
spatial_position_emb=spatial_position_emb, |
|
).sample |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
self.print_idx += 1 |
|
return hidden_states |
|
|
|
|
|
class UpBlock3D(nn.Module): |
|
print_idx = 0 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
femb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
temporal_conv_block: Union[nn.Module, None] = TemporalConvLayer, |
|
need_adain_temporal_cond: bool = False, |
|
resnet_2d_skip_time_act: bool = False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
temp_convs = [] |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
skip_time_act=resnet_2d_skip_time_act, |
|
) |
|
) |
|
if temporal_conv_block is not None: |
|
temp_convs.append( |
|
temporal_conv_block( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
femb_channels=femb_channels, |
|
) |
|
) |
|
else: |
|
temp_convs.append(None) |
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
self.need_adain_temporal_cond = need_adain_temporal_cond |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
res_hidden_states_tuple, |
|
temb=None, |
|
upsample_size=None, |
|
num_frames=1, |
|
sample_index: torch.LongTensor = None, |
|
vision_conditon_frames_sample_index: torch.LongTensor = None, |
|
spatial_position_emb: torch.Tensor = None, |
|
femb=None, |
|
refer_self_attn_emb: List[torch.Tensor] = None, |
|
refer_self_attn_emb_mode: Literal["read", "write"] = "read", |
|
): |
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
if temp_conv is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(temp_conv), |
|
hidden_states, |
|
num_frames, |
|
sample_index, |
|
vision_conditon_frames_sample_index, |
|
femb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
if temp_conv is not None: |
|
hidden_states = temp_conv( |
|
hidden_states, |
|
num_frames=num_frames, |
|
femb=femb, |
|
sample_index=sample_index, |
|
vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, |
|
) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
if ( |
|
self.need_adain_temporal_cond |
|
and num_frames > 1 |
|
and sample_index is not None |
|
): |
|
if self.print_idx == 0: |
|
logger.debug(f"adain to vision_condition") |
|
hidden_states = batch_adain_conditioned_tensor( |
|
hidden_states, |
|
num_frames=num_frames, |
|
need_style_fidelity=False, |
|
src_index=sample_index, |
|
dst_index=vision_conditon_frames_sample_index, |
|
) |
|
self.print_idx += 1 |
|
return hidden_states |
|
|