|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
from numpy import ndarray |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import ( |
|
KarrasDiffusionSchedulers, |
|
SchedulerMixin, |
|
) |
|
from diffusers.schedulers.scheduling_ddpm import ( |
|
DDPMSchedulerOutput, |
|
betas_for_alpha_bar, |
|
DDPMScheduler as DiffusersDDPMScheduler, |
|
) |
|
from ..utils.noise_util import video_fusion_noise |
|
|
|
|
|
class DDPMScheduler(DiffusersDDPMScheduler): |
|
""" |
|
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
variance_type (`str`, defaults to `"fixed_small"`): |
|
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, |
|
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
clip_sample (`bool`, defaults to `True`): |
|
Clip the predicted sample for numerical stability. |
|
clip_sample_range (`float`, defaults to 1.0): |
|
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. |
|
timestep_spacing (`str`, defaults to `"leading"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: ndarray | List[float] | None = None, |
|
variance_type: str = "fixed_small", |
|
clip_sample: bool = True, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
clip_sample_range: float = 1, |
|
sample_max_value: float = 1, |
|
timestep_spacing: str = "leading", |
|
steps_offset: int = 0, |
|
): |
|
super().__init__( |
|
num_train_timesteps, |
|
beta_start, |
|
beta_end, |
|
beta_schedule, |
|
trained_betas, |
|
variance_type, |
|
clip_sample, |
|
prediction_type, |
|
thresholding, |
|
dynamic_thresholding_ratio, |
|
clip_sample_range, |
|
sample_max_value, |
|
timestep_spacing, |
|
steps_offset, |
|
) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
w_ind_noise: float = 0.5, |
|
noise_type: str = "random", |
|
) -> Union[DDPMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
|
|
prev_t = self.previous_timestep(t) |
|
|
|
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [ |
|
"learned", |
|
"learned_range", |
|
]: |
|
model_output, predicted_variance = torch.split( |
|
model_output, sample.shape[1], dim=1 |
|
) |
|
else: |
|
predicted_variance = None |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
current_alpha_t = alpha_prod_t / alpha_prod_t_prev |
|
current_beta_t = 1 - current_alpha_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = ( |
|
sample - beta_prod_t ** (0.5) * model_output |
|
) / alpha_prod_t ** (0.5) |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - ( |
|
beta_prod_t**0.5 |
|
) * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" |
|
" `v_prediction` for the DDPMScheduler." |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
pred_original_sample = self._threshold_sample(pred_original_sample) |
|
elif self.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
pred_original_sample_coeff = ( |
|
alpha_prod_t_prev ** (0.5) * current_beta_t |
|
) / beta_prod_t |
|
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = ( |
|
pred_original_sample_coeff * pred_original_sample |
|
+ current_sample_coeff * sample |
|
) |
|
|
|
|
|
variance = 0 |
|
if t > 0: |
|
device = model_output.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = model_output.device |
|
|
|
if noise_type == "random": |
|
variance_noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
elif noise_type == "video_fusion": |
|
variance_noise = video_fusion_noise( |
|
model_output, w_ind_noise=w_ind_noise, generator=generator |
|
) |
|
if self.variance_type == "fixed_small_log": |
|
variance = ( |
|
self._get_variance(t, predicted_variance=predicted_variance) |
|
* variance_noise |
|
) |
|
elif self.variance_type == "learned_range": |
|
variance = self._get_variance(t, predicted_variance=predicted_variance) |
|
variance = torch.exp(0.5 * variance) * variance_noise |
|
else: |
|
variance = ( |
|
self._get_variance(t, predicted_variance=predicted_variance) ** 0.5 |
|
) * variance_noise |
|
|
|
pred_prev_sample = pred_prev_sample + variance |
|
|
|
if not return_dict: |
|
return (pred_prev_sample,) |
|
|
|
return DDPMSchedulerOutput( |
|
prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|