File size: 14,866 Bytes
06e9d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import warnings
import os
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.modeling_utils import ModelMixin
import PIL
from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn.init as init
from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import is_compiled_module
class ControlnetPredictor(object):
def __init__(self, controlnet_model_path: str, *args, **kwargs):
"""Controlnet 推断函数,用于提取 controlnet backbone的emb,避免训练时重复抽取
Controlnet inference predictor, used to extract the emb of the controlnet backbone to avoid repeated extraction during training
Args:
controlnet_model_path (str): controlnet 模型路径. controlnet model path.
"""
super(ControlnetPredictor, self).__init__(*args, **kwargs)
self.controlnet = ControlNetModel.from_pretrained(
controlnet_model_path,
)
def prepare_image(
self,
image, # b c t h w
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if height is None:
height = image.shape[-2]
if width is None:
width = image.shape[-1]
width, height = (
x - x % self.control_image_processor.vae_scale_factor
for x in (width, height)
)
image = rearrange(image, "b c t h w-> (b t) c h w")
image = torch.from_numpy(image).to(dtype=torch.float32) / 255.0
image = (
torch.nn.functional.interpolate(
image,
size=(height, width),
mode="bilinear",
),
)
do_normalize = self.control_image_processor.config.do_normalize
if image.min() < 0:
warnings.warn(
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
FutureWarning,
)
do_normalize = False
if do_normalize:
image = self.control_image_processor.normalize(image)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
@torch.no_grad()
def __call__(
self,
batch_size: int,
device: str,
dtype: torch.dtype,
timesteps: List[float],
i: int,
scheduler: KarrasDiffusionSchedulers,
prompt_embeds: torch.Tensor,
do_classifier_free_guidance: bool = False,
# 2b co t ho wo
latent_model_input: torch.Tensor = None,
# b co t ho wo
latents: torch.Tensor = None,
# b c t h w
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
# b c t(1) hi wi
controlnet_condition_frames: Optional[torch.FloatTensor] = None,
# b c t ho wo
controlnet_latents: Union[torch.FloatTensor, np.ndarray] = None,
# b c t(1) ho wo
controlnet_condition_latents: Optional[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
return_dict: bool = True,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
latent_index: torch.LongTensor = None,
vision_condition_latent_index: torch.LongTensor = None,
**kwargs,
):
assert (
image is None and controlnet_latents is None
), "should set one of image and controlnet_latents"
controlnet = (
self.controlnet._orig_mod
if is_compiled_module(self.controlnet)
else self.controlnet
)
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(
control_guidance_end, list
):
control_guidance_start = len(control_guidance_end) * [
control_guidance_start
]
elif not isinstance(control_guidance_end, list) and isinstance(
control_guidance_start, list
):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(
control_guidance_end, list
):
mult = (
len(controlnet.nets)
if isinstance(controlnet, MultiControlNetModel)
else 1
)
control_guidance_start, control_guidance_end = mult * [
control_guidance_start
], mult * [control_guidance_end]
if isinstance(controlnet, MultiControlNetModel) and isinstance(
controlnet_conditioning_scale, float
):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(
controlnet.nets
)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
if (
controlnet_latents is not None
and controlnet_condition_latents is not None
):
if isinstance(controlnet_latents, np.ndarray):
controlnet_latents = torch.from_numpy(controlnet_latents)
if isinstance(controlnet_condition_latents, np.ndarray):
controlnet_condition_latents = torch.from_numpy(
controlnet_condition_latents
)
# TODO:使用index进行concat
controlnet_latents = torch.concat(
[controlnet_condition_latents, controlnet_latents], dim=2
)
if not guess_mode and do_classifier_free_guidance:
controlnet_latents = torch.concat([controlnet_latents] * 2, dim=0)
controlnet_latents = rearrange(
controlnet_latents, "b c t h w->(b t) c h w"
)
controlnet_latents = controlnet_latents.to(device=device, dtype=dtype)
else:
# TODO:使用index进行concat
# TODO: concat with index
if controlnet_condition_frames is not None:
if isinstance(controlnet_condition_frames, np.ndarray):
image = np.concatenate(
[controlnet_condition_frames, image], axis=2
)
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_videos_per_prompt,
num_images_per_prompt=num_videos_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
# TODO: 支持直接使用controlnet_latent而不是frames
# TODO: support using controlnet_latent directly instead of frames
if controlnet_latents is not None:
raise NotImplementedError
else:
for i, image_ in enumerate(image):
if controlnet_condition_frames is not None and isinstance(
controlnet_condition_frames, list
):
if isinstance(controlnet_condition_frames[i], np.ndarray):
image_ = np.concatenate(
[controlnet_condition_frames[i], image_], axis=2
)
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_videos_per_prompt,
num_images_per_prompt=num_videos_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
)
t = timesteps[i]
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [
c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])
]
else:
cond_scale = controlnet_conditioning_scale * controlnet_keep[i]
control_model_input_reshape = rearrange(
control_model_input, "b c t h w -> (b t) c h w"
)
encoder_hidden_states_repeat = repeat(
controlnet_prompt_embeds,
"b n q->(b t) n q",
t=control_model_input.shape[2],
)
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input_reshape,
t,
encoder_hidden_states_repeat,
controlnet_cond=image,
controlnet_cond_latents=controlnet_latents,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
return down_block_res_samples, mid_block_res_sample
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
video_length = x.shape[2]
x = rearrange(x, "b c f h w -> (b f) c h w")
x = super().forward(x)
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
return x
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class PoseGuider(ModelMixin):
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 64, 128),
):
super().__init__()
self.conv_in = InflatedConv3d(
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
)
self.blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
)
self.blocks.append(
InflatedConv3d(
channel_in, channel_out, kernel_size=3, padding=1, stride=2
)
)
self.conv_out = zero_module(
InflatedConv3d(
block_out_channels[-1],
conditioning_embedding_channels,
kernel_size=3,
padding=1,
)
)
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
@classmethod
def from_pretrained(
cls,
pretrained_model_path,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 64, 128),
):
if not os.path.exists(pretrained_model_path):
print(f"There is no model file in {pretrained_model_path}")
print(
f"loaded PoseGuider's pretrained weights from {pretrained_model_path} ..."
)
state_dict = torch.load(pretrained_model_path, map_location="cpu")
model = PoseGuider(
conditioning_embedding_channels=conditioning_embedding_channels,
conditioning_channels=conditioning_channels,
block_out_channels=block_out_channels,
)
m, u = model.load_state_dict(state_dict, strict=False)
# print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
params = [p.numel() for n, p in model.named_parameters()]
print(f"### PoseGuider's Parameters: {sum(params) / 1e6} M")
return model
|