File size: 39,946 Bytes
06e9d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
import argparse
import copy
import os
from pathlib import Path
import logging
from collections import OrderedDict
from pprint import pprint
import random
import gradio as gr
import numpy as np
from omegaconf import OmegaConf, SCMode
import torch
from einops import rearrange, repeat
import cv2
from PIL import Image
from diffusers.models.autoencoder_kl import AutoencoderKL
from mmcm.utils.load_util import load_pyhon_obj
from mmcm.utils.seed_util import set_all_seed
from mmcm.utils.signature import get_signature_of_string
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
from mmcm.utils.str_util import clean_str_for_save
from mmcm.vision.data.video_dataset import DecordVideoDataset
from musev.auto_prompt.util import generate_prompts
from musev.models.controlnet import PoseGuider
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
from musev.models.referencenet_loader import load_referencenet_by_name
from musev.models.ip_adapter_loader import (
load_ip_adapter_vision_clip_encoder_by_name,
load_vision_clip_encoder_by_name,
load_ip_adapter_image_proj_by_name,
)
from musev.models.ip_adapter_face_loader import (
load_ip_adapter_face_extractor_and_proj_by_name,
)
from musev.pipelines.pipeline_controlnet_predictor import (
DiffusersPipelinePredictor,
)
from musev.models.referencenet import ReferenceNet2D
from musev.models.unet_loader import load_unet_by_name
from musev.utils.util import save_videos_grid_with_opencv
from musev import logger
logger.setLevel("INFO")
file_dir = os.path.dirname(__file__)
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "../..")
DATA_DIR = os.path.join(PROJECT_DIR, "data")
CACHE_PATH = "./t2v_input_image"
# TODO:use group to group arguments
args_dict = {
"add_static_video_prompt": False,
"context_batch_size": 1,
"context_frames": 12,
"context_overlap": 4,
"context_schedule": "uniform_v2",
"context_stride": 1,
"controlnet_conditioning_scale": 1.0,
"controlnet_name": "dwpose_body_hand",
"cross_attention_dim": 768,
"enable_zero_snr": False,
"end_to_end": True,
"face_image_path": None,
"facein_model_cfg_path": "../../configs/model/facein.py",
"facein_model_name": None,
"facein_scale": 1.0,
"fix_condition_images": False,
"fixed_ip_adapter_image": True,
"fixed_refer_face_image": True,
"fixed_refer_image": True,
"fps": 4,
"guidance_scale": 7.5,
"height": None,
"img_length_ratio": 1.0,
"img_weight": 0.001,
"interpolation_factor": 1,
"ip_adapter_face_model_cfg_path": "../../configs/model/ip_adapter.py",
"ip_adapter_face_model_name": None,
"ip_adapter_face_scale": 1.0,
"ip_adapter_model_cfg_path": "../../configs/model/ip_adapter.py",
"ip_adapter_model_name": "musev_referencenet_pose",
"ip_adapter_scale": 1.0,
"ipadapter_image_path": None,
"lcm_model_cfg_path": "../../configs/model/lcm_model.py",
"lcm_model_name": None,
"log_level": "INFO",
"motion_speed": 8.0,
"n_batch": 1,
"n_cols": 3,
"n_repeat": 1,
"n_vision_condition": 1,
"need_hist_match": False,
"need_img_based_video_noise": True,
"need_return_condition": False,
"need_return_videos": False,
"need_video2video": False,
"negative_prompt": "V2",
"negprompt_cfg_path": "../../configs/model/negative_prompt.py",
"noise_type": "video_fusion",
"num_inference_steps": 30,
"output_dir": "./results/",
"overwrite": False,
"pose_guider_model_path": None,
"prompt_only_use_image_prompt": False,
"record_mid_video_latents": False,
"record_mid_video_noises": False,
"redraw_condition_image": False,
"redraw_condition_image_with_facein": True,
"redraw_condition_image_with_ip_adapter_face": True,
"redraw_condition_image_with_ipdapter": True,
"redraw_condition_image_with_referencenet": True,
"referencenet_image_path": None,
"referencenet_model_cfg_path": "../../configs/model/referencenet.py",
"referencenet_model_name": "musev_referencenet",
"sample_rate": 1,
"save_filetype": "mp4",
"save_images": False,
"sd_model_cfg_path": "../../configs/model/T2I_all_model.py",
"sd_model_name": "majicmixRealv6Fp16",
"seed": None,
"strength": 0.8,
"target_datas": "boy_dance2",
"test_data_path": "./configs/infer/testcase_video_famous.yaml",
"time_size": 12,
"unet_model_cfg_path": "../../configs/model/motion_model.py",
"unet_model_name": "musev_referencenet_pose",
"use_condition_image": True,
"vae_model_path": "../../checkpoints/vae/sd-vae-ft-mse",
"video_guidance_scale": 3.5,
"video_guidance_scale_end": None,
"video_guidance_scale_method": "linear",
"video_has_condition": True,
"video_is_middle": False,
"video_negative_prompt": "V2",
"video_num_inference_steps": 10,
"video_overlap": 1,
"video_strength": 1.0,
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
"vision_clip_model_path": "../../checkpoints/IP-Adapter/models/image_encoder",
"w_ind_noise": 0.5,
"which2video": "video_middle",
"width": None,
"write_info": False,
}
args = argparse.Namespace(**args_dict)
print("args")
pprint(args.__dict__)
print("\n")
logger.setLevel(args.log_level)
overwrite = args.overwrite
cross_attention_dim = args.cross_attention_dim
time_size = args.time_size # 一次视频生成的帧数
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
fps = args.fps
fix_condition_images = args.fix_condition_images
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
need_img_based_video_noise = (
args.need_img_based_video_noise
) # 视频加噪过程中是否使用首帧 condition_images
img_weight = args.img_weight
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
n_cols = args.n_cols
noise_type = args.noise_type
strength = args.strength # 首帧重绘程度参数
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
seed = args.seed
save_filetype = args.save_filetype
save_images = args.save_images
sd_model_cfg_path = args.sd_model_cfg_path
sd_model_name = (
args.sd_model_name if args.sd_model_name == "all" else args.sd_model_name.split(",")
)
unet_model_cfg_path = args.unet_model_cfg_path
unet_model_name = args.unet_model_name
test_data_path = args.test_data_path
target_datas = (
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
controlnet_name = args.controlnet_name
controlnet_name_str = controlnet_name
if controlnet_name is not None:
controlnet_name = controlnet_name.split(",")
if len(controlnet_name) == 1:
controlnet_name = controlnet_name[0]
video_strength = args.video_strength # 视频重绘程度参数
sample_rate = args.sample_rate
controlnet_conditioning_scale = args.controlnet_conditioning_scale
end_to_end = args.end_to_end # 是否首尾相连生成长视频
control_guidance_start = 0.0
control_guidance_end = 0.5
control_guidance_end = 1.0
negprompt_cfg_path = args.negprompt_cfg_path
video_negative_prompt = args.video_negative_prompt
negative_prompt = args.negative_prompt
motion_speed = args.motion_speed
need_hist_match = args.need_hist_match
video_guidance_scale_end = args.video_guidance_scale_end
video_guidance_scale_method = args.video_guidance_scale_method
add_static_video_prompt = args.add_static_video_prompt
n_vision_condition = args.n_vision_condition
lcm_model_cfg_path = args.lcm_model_cfg_path
lcm_model_name = args.lcm_model_name
referencenet_model_cfg_path = args.referencenet_model_cfg_path
referencenet_model_name = args.referencenet_model_name
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
ip_adapter_model_name = args.ip_adapter_model_name
vision_clip_model_path = args.vision_clip_model_path
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
facein_model_cfg_path = args.facein_model_cfg_path
facein_model_name = args.facein_model_name
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
ip_adapter_face_model_name = args.ip_adapter_face_model_name
fixed_refer_image = args.fixed_refer_image
fixed_ip_adapter_image = args.fixed_ip_adapter_image
fixed_refer_face_image = args.fixed_refer_face_image
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
redraw_condition_image_with_ip_adapter_face = (
args.redraw_condition_image_with_ip_adapter_face
)
w_ind_noise = args.w_ind_noise
ip_adapter_scale = args.ip_adapter_scale
facein_scale = args.facein_scale
ip_adapter_face_scale = args.ip_adapter_face_scale
face_image_path = args.face_image_path
ipadapter_image_path = args.ipadapter_image_path
referencenet_image_path = args.referencenet_image_path
vae_model_path = args.vae_model_path
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
pose_guider_model_path = args.pose_guider_model_path
need_video2video = args.need_video2video
# serial_denoise parameter start
record_mid_video_noises = args.record_mid_video_noises
record_mid_video_latents = args.record_mid_video_latents
video_overlap = args.video_overlap
# serial_denoise parameter end
# parallel_denoise parameter start
context_schedule = args.context_schedule
context_frames = args.context_frames
context_stride = args.context_stride
context_overlap = args.context_overlap
context_batch_size = args.context_batch_size
interpolation_factor = args.interpolation_factor
n_repeat = args.n_repeat
video_is_middle = args.video_is_middle
video_has_condition = args.video_has_condition
need_return_videos = args.need_return_videos
need_return_condition = args.need_return_condition
# parallel_denoise parameter end
need_controlnet = controlnet_name is not None
which2video = args.which2video
if which2video == "video":
which2video_name = "v2v"
elif which2video == "video_middle":
which2video_name = "vm2v"
else:
raise ValueError(
"which2video only support video, video_middle, but given {which2video}"
)
b = 1
negative_embedding = [
["../../checkpoints/embedding/badhandv4.pt", "badhandv4"],
[
"../../checkpoints/embedding/ng_deepnegative_v1_75t.pt",
"ng_deepnegative_v1_75t",
],
[
"../../checkpoints/embedding/EasyNegativeV2.safetensors",
"EasyNegativeV2",
],
[
"../../checkpoints/embedding/bad_prompt_version2-neg.pt",
"bad_prompt_version2-neg",
],
]
prefix_prompt = ""
suffix_prompt = ", beautiful, masterpiece, best quality"
suffix_prompt = ""
if sd_model_name != "None":
# 使用 cfg_path 里的sd_model_path
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
sd_model_params_dict = {
k: v
for k, v in sd_model_params_dict_src.items()
if sd_model_name == "all" or k in sd_model_name
}
else:
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
sd_model_params_dict_src = sd_model_params_dict
if len(sd_model_params_dict) == 0:
raise ValueError(
"has not target model, please set one of {}".format(
" ".join(list(sd_model_params_dict_src.keys()))
)
)
print("running model, T2I SD")
pprint(sd_model_params_dict)
# lcm
if lcm_model_name is not None:
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
print("lcm_model_params_dict_src")
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
else:
lcm_lora_dct = None
print("lcm: ", lcm_model_name, lcm_lora_dct)
# motion net parameters
if os.path.isdir(unet_model_cfg_path):
unet_model_path = unet_model_cfg_path
elif os.path.isfile(unet_model_cfg_path):
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
else:
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
print("unet: ", unet_model_name, unet_model_path)
# referencenet
if referencenet_model_name is not None:
if os.path.isdir(referencenet_model_cfg_path):
referencenet_model_path = referencenet_model_cfg_path
elif os.path.isfile(referencenet_model_cfg_path):
referencenet_model_params_dict_src = load_pyhon_obj(
referencenet_model_cfg_path, "MODEL_CFG"
)
print(
"referencenet_model_params_dict_src",
referencenet_model_params_dict_src.keys(),
)
referencenet_model_path = referencenet_model_params_dict_src[
referencenet_model_name
]["net"]
else:
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
else:
referencenet_model_path = None
print("referencenet: ", referencenet_model_name, referencenet_model_path)
# ip_adapter
if ip_adapter_model_name is not None:
ip_adapter_model_params_dict_src = load_pyhon_obj(
ip_adapter_model_cfg_path, "MODEL_CFG"
)
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
ip_adapter_model_name
]
else:
ip_adapter_model_params_dict = None
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
# facein
if facein_model_name is not None:
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
else:
facein_model_params_dict = None
print("facein: ", facein_model_name, facein_model_params_dict)
# ip_adapter_face
if ip_adapter_face_model_name is not None:
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
ip_adapter_face_model_cfg_path, "MODEL_CFG"
)
print(
"ip_adapter_face_model_params_dict_src",
ip_adapter_face_model_params_dict_src.keys(),
)
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
ip_adapter_face_model_name
]
else:
ip_adapter_face_model_params_dict = None
print(
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
)
# negative_prompt
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
name = negative_prompt[:n]
if cfg_path is not None and cfg_path not in ["None", "none"]:
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
negative_prompt = dct[negative_prompt]["prompt"]
return name, negative_prompt
negtive_prompt_length = 10
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
video_negative_prompt,
cfg_path=negprompt_cfg_path,
n=negtive_prompt_length,
)
negative_prompt_name, negative_prompt = get_negative_prompt(
negative_prompt,
cfg_path=negprompt_cfg_path,
n=negtive_prompt_length,
)
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
print("negprompt", negative_prompt_name, negative_prompt)
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# test_data_parameters
def load_yaml(path):
tasks = OmegaConf.to_container(
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
)
return tasks
# if test_data_path.endswith(".yaml"):
# test_datas_src = load_yaml(test_data_path)
# elif test_data_path.endswith(".csv"):
# test_datas_src = generate_tasks_from_table(test_data_path)
# else:
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
# test_datas = [
# test_data
# for test_data in test_datas_src
# if target_datas == "all" or test_data.get("name", None) in target_datas
# ]
# test_datas = fiss_tasks(test_datas)
# test_datas = generate_prompts(test_datas)
# n_test_datas = len(test_datas)
# if n_test_datas == 0:
# raise ValueError(
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
# " ".join(list(d.get("name", "None") for d in test_datas_src))
# )
# )
# print("n_test_datas", n_test_datas)
# # pprint(test_datas)
def read_image(path):
name = os.path.basename(path).split(".")[0]
image = read_image_as_5d(path)
return image, name
def read_image_lst(path):
images_names = [read_image(x) for x in path]
images, names = zip(*images_names)
images = np.concatenate(images, axis=2)
name = "_".join(names)
return images, name
def read_image_and_name(path):
if isinstance(path, str):
path = [path]
images, name = read_image_lst(path)
return images, name
if referencenet_model_name is not None:
referencenet = load_referencenet_by_name(
model_name=referencenet_model_name,
# sd_model=sd_model_path,
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
sd_referencenet_model=referencenet_model_path,
cross_attention_dim=cross_attention_dim,
)
else:
referencenet = None
referencenet_model_name = "no"
if vision_clip_extractor_class_name is not None:
vision_clip_extractor = load_vision_clip_encoder_by_name(
ip_image_encoder=vision_clip_model_path,
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
)
logger.info(
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
)
else:
vision_clip_extractor = None
logger.info(f"vision_clip_extractor, None")
if ip_adapter_model_name is not None:
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
model_name=ip_adapter_model_name,
ip_image_encoder=ip_adapter_model_params_dict.get(
"ip_image_encoder", vision_clip_model_path
),
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
clip_extra_context_tokens=ip_adapter_model_params_dict[
"clip_extra_context_tokens"
],
ip_scale=ip_adapter_model_params_dict["ip_scale"],
device=device,
)
else:
ip_adapter_image_proj = None
ip_adapter_model_name = "no"
if pose_guider_model_path is not None:
logger.info(f"PoseGuider ={pose_guider_model_path}")
pose_guider = PoseGuider.from_pretrained(
pose_guider_model_path,
conditioning_embedding_channels=320,
block_out_channels=(16, 32, 96, 256),
)
else:
pose_guider = None
for model_name, sd_model_params in sd_model_params_dict.items():
lora_dict = sd_model_params.get("lora", None)
model_sex = sd_model_params.get("sex", None)
model_style = sd_model_params.get("style", None)
sd_model_path = sd_model_params["sd"]
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
unet = load_unet_by_name(
model_name=unet_model_name,
sd_unet_model=unet_model_path,
sd_model=sd_model_path,
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
cross_attention_dim=cross_attention_dim,
need_t2i_facein=facein_model_name is not None,
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
strict=not (facein_model_name is not None),
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
)
if facein_model_name is not None:
(
face_emb_extractor,
facein_image_proj,
) = load_facein_extractor_and_proj_by_name(
model_name=facein_model_name,
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
ip_ckpt=facein_model_params_dict["ip_ckpt"],
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
clip_extra_context_tokens=facein_model_params_dict[
"clip_extra_context_tokens"
],
ip_scale=facein_model_params_dict["ip_scale"],
device=device,
# facein目前没有参与unet中的训练,需要单独载入参数
unet=unet,
)
else:
face_emb_extractor = None
facein_image_proj = None
if ip_adapter_face_model_name is not None:
(
ip_adapter_face_emb_extractor,
ip_adapter_face_image_proj,
) = load_ip_adapter_face_extractor_and_proj_by_name(
model_name=ip_adapter_face_model_name,
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=ip_adapter_face_model_params_dict[
"clip_embeddings_dim"
],
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
"clip_extra_context_tokens"
],
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
device=device,
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
)
else:
ip_adapter_face_emb_extractor = None
ip_adapter_face_image_proj = None
print("test_model_vae_model_path", test_model_vae_model_path)
sd_predictor = DiffusersPipelinePredictor(
sd_model_path=sd_model_path,
unet=unet,
lora_dict=lora_dict,
lcm_lora_dct=lcm_lora_dct,
device=device,
dtype=torch_dtype,
negative_embedding=negative_embedding,
referencenet=referencenet,
ip_adapter_image_proj=ip_adapter_image_proj,
vision_clip_extractor=vision_clip_extractor,
facein_image_proj=facein_image_proj,
face_emb_extractor=face_emb_extractor,
vae_model=test_model_vae_model_path,
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
pose_guider=pose_guider,
controlnet_name=controlnet_name,
# TODO: 一些过期参数,待去掉
include_body=True,
include_face=False,
include_hand=True,
enable_zero_snr=args.enable_zero_snr,
)
logger.debug(f"load referencenet"),
# TODO:这里修改为gradio
import cuid
def generate_cuid():
return cuid.cuid()
def online_v2v_inference(
prompt,
image_np,
video,
processor,
seed,
fps,
w,
h,
video_length,
img_edge_ratio: float = 1.0,
progress=gr.Progress(track_tqdm=True),
):
progress(0, desc="Starting...")
# Save the uploaded image to a specified path
if not os.path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH)
image_cuid = generate_cuid()
import pdb
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
image = Image.fromarray(image_np)
image.save(image_path)
time_size = int(video_length)
test_data = {
"name": image_cuid,
"prompt": prompt,
"video_path": video,
"condition_images": image_path,
"refer_image": image_path,
"ipadapter_image": image_path,
"height": h,
"width": w,
"img_length_ratio": img_edge_ratio,
# 'style': 'anime',
# 'sex': 'female'
}
batch = []
texts = []
video_path = test_data.get("video_path")
video_reader = DecordVideoDataset(
video_path,
time_size=int(video_length),
step=time_size,
sample_rate=sample_rate,
device="cpu",
data_type="rgb",
channels_order="c t h w",
drop_last=True,
)
video_height = video_reader.height
video_width = video_reader.width
print("\n i_test_data", test_data, model_name)
test_data_name = test_data.get("name", test_data)
prompt = test_data["prompt"]
prompt = prefix_prompt + prompt + suffix_prompt
prompt_hash = get_signature_of_string(prompt, length=5)
test_data["prompt_hash"] = prompt_hash
test_data_height = test_data.get("height", height)
test_data_width = test_data.get("width", width)
test_data_condition_images_path = test_data.get("condition_images", None)
test_data_condition_images_index = test_data.get("condition_images_index", None)
test_data_redraw_condition_image = test_data.get(
"redraw_condition_image", redraw_condition_image
)
# read condition_image
if (
test_data_condition_images_path is not None
and use_condition_image
and (
isinstance(test_data_condition_images_path, list)
or (
isinstance(test_data_condition_images_path, str)
and is_image(test_data_condition_images_path)
)
)
):
(
test_data_condition_images,
test_data_condition_images_name,
) = read_image_and_name(test_data_condition_images_path)
condition_image_height = test_data_condition_images.shape[3]
condition_image_width = test_data_condition_images.shape[4]
logger.debug(
f"test_data_condition_images use {test_data_condition_images_path}"
)
else:
test_data_condition_images = None
test_data_condition_images_name = "no"
condition_image_height = None
condition_image_width = None
logger.debug(f"test_data_condition_images is None")
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
if test_data_height in [None, -1]:
test_data_height = condition_image_height
if test_data_width in [None, -1]:
test_data_width = condition_image_width
test_data_img_length_ratio = float(
test_data.get("img_length_ratio", img_length_ratio)
)
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
pprint(test_data)
print(f"test_data_height={test_data_height}")
print(f"test_data_width={test_data_width}")
# continue
test_data_style = test_data.get("style", None)
test_data_sex = test_data.get("sex", None)
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
test_data_img_weight = float(test_data.get("img_weight", img_weight))
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
test_data_ipadapter_image_path = test_data.get(
"ipadapter_image", ipadapter_image_path
)
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
test_data_video_is_middle = test_data.get("video_is_middle", video_is_middle)
test_data_video_has_condition = test_data.get(
"video_has_condition", video_has_condition
)
controlnet_processor_params = {
"detect_resolution": min(test_data_height, test_data_width),
"image_resolution": min(test_data_height, test_data_width),
}
if negprompt_cfg_path is not None:
if "video_negative_prompt" in test_data:
(
test_data_video_negative_prompt_name,
test_data_video_negative_prompt,
) = get_negative_prompt(
test_data.get(
"video_negative_prompt",
),
cfg_path=negprompt_cfg_path,
n=negtive_prompt_length,
)
else:
test_data_video_negative_prompt_name = video_negative_prompt_name
test_data_video_negative_prompt = video_negative_prompt
if "negative_prompt" in test_data:
(
test_data_negative_prompt_name,
test_data_negative_prompt,
) = get_negative_prompt(
test_data.get(
"negative_prompt",
),
cfg_path=negprompt_cfg_path,
n=negtive_prompt_length,
)
else:
test_data_negative_prompt_name = negative_prompt_name
test_data_negative_prompt = negative_prompt
else:
test_data_video_negative_prompt = test_data.get(
"video_negative_prompt", video_negative_prompt
)
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
:negtive_prompt_length
]
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
test_data_negative_prompt_name = test_data_negative_prompt[
:negtive_prompt_length
]
# 准备 test_data_refer_image
if referencenet is not None:
if test_data_refer_image_path is None:
test_data_refer_image = test_data_condition_images
test_data_refer_image_name = test_data_condition_images_name
logger.debug(f"test_data_refer_image use test_data_condition_images")
else:
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
test_data_refer_image_path
)
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
else:
test_data_refer_image = None
test_data_refer_image_name = "no"
logger.debug(f"test_data_refer_image is None")
# 准备 test_data_ipadapter_image
if vision_clip_extractor is not None:
if test_data_ipadapter_image_path is None:
test_data_ipadapter_image = test_data_condition_images
test_data_ipadapter_image_name = test_data_condition_images_name
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
else:
(
test_data_ipadapter_image,
test_data_ipadapter_image_name,
) = read_image_and_name(test_data_ipadapter_image_path)
logger.debug(
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
)
else:
test_data_ipadapter_image = None
test_data_ipadapter_image_name = "no"
logger.debug(f"test_data_ipadapter_image is None")
# 准备 test_data_refer_face_image
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
if test_data_refer_face_image_path is None:
test_data_refer_face_image = test_data_condition_images
test_data_refer_face_image_name = test_data_condition_images_name
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
else:
(
test_data_refer_face_image,
test_data_refer_face_image_name,
) = read_image_and_name(test_data_refer_face_image_path)
logger.debug(
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
)
else:
test_data_refer_face_image = None
test_data_refer_face_image_name = "no"
logger.debug(f"test_data_refer_face_image is None")
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
# if (
# model_sex is not None
# and test_data_sex is not None
# and model_sex != test_data_sex
# ) or (
# model_style is not None
# and test_data_style is not None
# and model_style != test_data_style
# ):
# print("model doesnt match test_data")
# print("model name: ", model_name)
# print("test_data: ", test_data)
# continue
# video
filename = os.path.basename(video_path).split(".")[0]
for i_num in range(n_repeat):
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
save_file_name = (
f"{which2video_name}_m={model_name}_rm={referencenet_model_name}_c={test_data_name}"
f"_w={test_data_width}_h={test_data_height}_t={time_size}_n={n_batch}"
f"_vn={video_num_inference_steps}"
f"_w={test_data_img_weight}_w={test_data_w_ind_noise}"
f"_s={test_data_seed}_n={controlnet_name_str}"
f"_s={strength}_g={guidance_scale}_vs={video_strength}_vg={video_guidance_scale}"
f"_p={prompt_hash}_{test_data_video_negative_prompt_name[:10]}"
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
)
save_file_name = clean_str_for_save(save_file_name)
output_path = os.path.join(
output_dir,
f"{save_file_name}.{save_filetype}",
)
if os.path.exists(output_path) and not overwrite:
print("existed", output_path)
continue
if which2video in ["video", "video_middle"]:
need_video2video = False
if which2video == "video":
need_video2video = True
(
out_videos,
out_condition,
videos,
) = sd_predictor.run_pipe_video2video(
video=video_path,
time_size=time_size,
step=time_size,
sample_rate=sample_rate,
need_return_videos=need_return_videos,
need_return_condition=need_return_condition,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
end_to_end=end_to_end,
need_video2video=need_video2video,
video_strength=video_strength,
prompt=prompt,
width=test_data_width,
height=test_data_height,
generator=gpu_generator,
noise_type=noise_type,
negative_prompt=test_data_negative_prompt,
video_negative_prompt=test_data_video_negative_prompt,
max_batch_num=n_batch,
strength=strength,
need_img_based_video_noise=need_img_based_video_noise,
video_num_inference_steps=video_num_inference_steps,
condition_images=test_data_condition_images,
fix_condition_images=fix_condition_images,
video_guidance_scale=video_guidance_scale,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
redraw_condition_image=test_data_redraw_condition_image,
img_weight=test_data_img_weight,
w_ind_noise=test_data_w_ind_noise,
n_vision_condition=n_vision_condition,
motion_speed=test_data_motion_speed,
need_hist_match=need_hist_match,
video_guidance_scale_end=video_guidance_scale_end,
video_guidance_scale_method=video_guidance_scale_method,
vision_condition_latent_index=test_data_condition_images_index,
refer_image=test_data_refer_image,
fixed_refer_image=fixed_refer_image,
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
ip_adapter_image=test_data_ipadapter_image,
refer_face_image=test_data_refer_face_image,
fixed_refer_face_image=fixed_refer_face_image,
facein_scale=facein_scale,
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
ip_adapter_face_scale=ip_adapter_face_scale,
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
fixed_ip_adapter_image=fixed_ip_adapter_image,
ip_adapter_scale=ip_adapter_scale,
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
controlnet_processor_params=controlnet_processor_params,
# serial_denoise parameter start
record_mid_video_noises=record_mid_video_noises,
record_mid_video_latents=record_mid_video_latents,
video_overlap=video_overlap,
# serial_denoise parameter end
# parallel_denoise parameter start
context_schedule=context_schedule,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
interpolation_factor=interpolation_factor,
# parallel_denoise parameter end
video_is_middle=test_data_video_is_middle,
video_has_condition=test_data_video_has_condition,
)
else:
raise ValueError(
f"only support video, videomiddle2video, but given {which2video_name}"
)
print("out_videos.shape", out_videos.shape)
batch = [out_videos]
texts = ["out"]
if videos is not None:
print("videos.shape", videos.shape)
batch.insert(0, videos / 255.0)
texts.insert(0, "videos")
if need_controlnet and out_condition is not None:
if not isinstance(out_condition, list):
print("out_condition", out_condition.shape)
batch.append(out_condition / 255.0)
texts.append(controlnet_name)
else:
batch.extend([x / 255.0 for x in out_condition])
texts.extend(controlnet_name)
out = np.concatenate(batch, axis=0)
save_videos_grid_with_opencv(
out,
output_path,
texts=texts,
fps=fps,
tensor_order="b c t h w",
n_cols=n_cols,
write_info=args.write_info,
save_filetype=save_filetype,
save_images=save_images,
)
print("Save to", output_path)
print("\n" * 2)
return output_path
|