jlynxdev commited on
Commit
b066d77
·
verified ·
1 Parent(s): a98f4f0

Upload 13 files

Browse files
Files changed (13) hide show
  1. .gitignore +164 -0
  2. LICENSE +674 -0
  3. README.md +1 -13
  4. app.py +34 -0
  5. data_filtering.py +332 -0
  6. face_detector.py +18 -0
  7. fer.py +59 -0
  8. model.py +102 -0
  9. model_small.py +88 -0
  10. preprocessing.py +69 -0
  11. train.py +50 -0
  12. trainer.py +520 -0
  13. util.py +24 -0
.gitignore ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ .idea/
161
+
162
+ dev.ipynb
163
+ dev/
164
+ wandb/
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,13 +1 @@
1
- ---
2
- title: Fer Demo 1
3
- emoji: 📉
4
- colorFrom: pink
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 4.26.0
8
- app_file: app.py
9
- pinned: false
10
- license: gpl-3.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # face-expression-recognizer
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from fer import FaceExpressionRecognizer
3
+
4
+ fer = FaceExpressionRecognizer()
5
+
6
+ webcam_interface = gr.Interface(
7
+ fer.handle_frame,
8
+ inputs=gr.Image(type='pil', sources=['webcam'], streaming=True, label='Input webcam'),
9
+ outputs=gr.Image(label='Output video'),
10
+ live=True,
11
+ title='Webcam mode',
12
+ description='Created by Czarna Magia AI Student Club',
13
+ theme=gr.themes.Soft(),
14
+ )
15
+
16
+ img_interface = gr.Interface(
17
+ fer.handle_frame,
18
+ inputs=gr.Image(type='pil', sources=['webcam', 'upload'], label='Input image'),
19
+ outputs=gr.Image(label='Output image'),
20
+ title='Image upload mode',
21
+ description='Created by Czarna Magia AI Student Club',
22
+ theme=gr.themes.Soft(),
23
+ )
24
+
25
+ app = gr.TabbedInterface(
26
+ interface_list=[webcam_interface, img_interface],
27
+ tab_names=['Webcam', 'Image upload'],
28
+ title='Face Expression Recognizer',
29
+ theme=gr.themes.Soft(),
30
+ )
31
+
32
+
33
+ if __name__ == '__main__':
34
+ app.launch()
data_filtering.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+ import cv2
4
+ from PIL import Image
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+ from sklearn.decomposition import PCA
8
+ import imagehash
9
+ from typing import Callable
10
+ from datetime import datetime as dt
11
+ from abc import ABC, abstractmethod
12
+
13
+ _DATASET_AVG_MEAN = 129.38489987766278
14
+ _DATASET_AVG_STD = 54.084109207654805
15
+
16
+
17
+ def save_to_file(location: str = './extracted_paths.txt') -> Callable:
18
+ def outer_wrapper(fn: Callable) -> Callable:
19
+ def inner_wrapper(*args, **kwargs):
20
+ paths: list[str] = fn(*args, **kwargs)
21
+ if kwargs.get('to_file'):
22
+ with open(location, 'a') as file:
23
+ file.write('\nFiles to remove [TIMESTAMP {}]:\n'.format(dt.now().strftime('%Y%m%d%H%M%S')))
24
+ for p in paths:
25
+ file.write(f'{p}\n')
26
+ return paths
27
+ return inner_wrapper
28
+ return outer_wrapper
29
+
30
+
31
+ def visualize(show_limit: int = -1) -> Callable:
32
+ def outer_wrapper(fn: Callable) -> Callable:
33
+ def inner_wrapper(*args, **kwargs):
34
+ paths: list[str] = fn(*args, **kwargs)
35
+ if kwargs.get('visualize_'):
36
+ if show_limit != -1:
37
+ paths = paths[:show_limit]
38
+
39
+ num_cols = 8
40
+ num_rows = len(paths) // num_cols + 1
41
+
42
+ fig = plt.figure(figsize=(8, 8))
43
+ for i, path in enumerate(paths, start=1):
44
+ plt.subplot(num_rows, num_cols, i)
45
+ plt.imshow(Image.open(path), cmap='gray')
46
+ plt.title(f'{Path(path).parent.name}', fontsize=7)
47
+ plt.axis('off')
48
+ fig.tight_layout()
49
+ plt.tight_layout()
50
+ fig.subplots_adjust(hspace=0.6, top=0.97)
51
+ plt.show()
52
+ return paths
53
+ return inner_wrapper
54
+ return outer_wrapper
55
+
56
+
57
+ class DataFilter(ABC):
58
+ def __init__(self):
59
+ self.paths = []
60
+
61
+ @abstractmethod
62
+ def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
63
+ pass
64
+
65
+ @abstractmethod
66
+ def clear(self) -> None:
67
+ pass
68
+
69
+ @abstractmethod
70
+ def filter(self) -> bool:
71
+ pass
72
+
73
+ @staticmethod
74
+ def _load_data(dir_: str) -> tuple[list[np.ndarray], list[str], list[str]]:
75
+ images = []
76
+ class_names = []
77
+ paths = []
78
+
79
+ for path in Path(dir_).glob('**/*.jpg'):
80
+ label = path.parent.name
81
+ image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE)
82
+ if image is not None and label is not None:
83
+ images.append(np.array(image))
84
+ class_names.append(label)
85
+ paths.append(str(path))
86
+
87
+ return images, class_names, paths
88
+
89
+
90
+ class DataFilterCompose(DataFilter):
91
+ def __init__(self, components: list[DataFilter]):
92
+ super().__init__()
93
+ self.components = components
94
+
95
+ @staticmethod
96
+ def build(components: list[DataFilter]) -> DataFilter:
97
+ return DataFilterCompose(components)
98
+
99
+ def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
100
+ extracted_paths = []
101
+ for component in self.components:
102
+ cur_extracted_paths = component.extract(data_dir,
103
+ visualize_=visualize_,
104
+ to_file=to_file)
105
+ extracted_paths += cur_extracted_paths
106
+ self.paths += extracted_paths
107
+ return extracted_paths
108
+
109
+ def clear(self) -> None:
110
+ for component in self.components:
111
+ component.clear()
112
+
113
+ def filter(self):
114
+ for component in self.components:
115
+ component.filter()
116
+
117
+ def add_component(self, component: DataFilter, position: int) -> None:
118
+ self.components.insert(position, component)
119
+
120
+ def rm_component(self, position: int) -> None:
121
+ self.components.pop(position)
122
+
123
+
124
+ class StatsDataFilter(DataFilter):
125
+ _OPTIM_MEAN_THRESH = 107
126
+ _OPTIM_STD_THRESH = 51
127
+
128
+ def __init__(self, data_avg_mean: float = None, data_avg_std: float = None, console_output: bool = False):
129
+ super().__init__()
130
+ self.data_avg_mean = data_avg_mean
131
+ self.data_avg_std = data_avg_std
132
+ self.console_output = console_output
133
+
134
+ @visualize()
135
+ @save_to_file()
136
+ def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
137
+ if self.data_avg_mean is None or self.data_avg_std is None:
138
+ stats = self._compute_dataset_stats(data_dir)
139
+ self.data_avg_mean = stats['avg_mean']
140
+ self.data_avg_std = stats['avg_std']
141
+
142
+ extracted_paths = self._extract_outliers_by_stats(
143
+ data_dir,
144
+ self.data_avg_mean,
145
+ self.data_avg_std,
146
+ StatsDataFilter._OPTIM_MEAN_THRESH,
147
+ StatsDataFilter._OPTIM_STD_THRESH,
148
+ self.console_output)
149
+
150
+ self.paths += extracted_paths
151
+ return extracted_paths
152
+
153
+ def clear(self) -> None:
154
+ self.paths.clear()
155
+ if self.console_output:
156
+ print(f'[{self.__class__.__name__}]: Paths memory cleared.')
157
+
158
+ def filter(self) -> bool:
159
+ has_error = False
160
+ for path in self.paths:
161
+ if not Path(path).exists():
162
+ has_error = True
163
+ continue
164
+ os.remove(path)
165
+ if self.console_output:
166
+ print(f'[{self.__class__.__name__}]: Removed {path}')
167
+ return has_error
168
+
169
+ @classmethod
170
+ def _extract_outliers_by_stats(cls,
171
+ data_root: str | Path,
172
+ dataset_avg_mean: float,
173
+ dataset_avg_std: float,
174
+ mean_thresh: float,
175
+ std_thresh: float,
176
+ console_output: bool = False) -> list[str]:
177
+ outlier_paths = []
178
+ count = 0
179
+ _, _, paths = StatsDataFilter._load_data(data_root)
180
+ total_len = len(paths)
181
+ for path in iter(paths):
182
+ img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
183
+ if abs(dataset_avg_mean - np.mean(img)) > mean_thresh or abs(
184
+ dataset_avg_std - np.std(img)) > std_thresh:
185
+ outlier_paths.append(path)
186
+ if console_output:
187
+ count += 1
188
+ print(f'[{cls.__name__}]: Computed {count}/{total_len} images ({count / total_len * 100:.2f}%)')
189
+ return outlier_paths
190
+
191
+ @staticmethod
192
+ def _compute_dataset_stats(data_dir: str) -> dict[str, float]:
193
+ img_paths = list(Path(data_dir).glob('**/*.jpg'))
194
+ num_images = len(img_paths)
195
+ mean_sum = 0
196
+ std_sum = 0
197
+
198
+ for img_path in img_paths:
199
+ img = cv2.imread(str(img_path), cv2.IMREAD_GRAYSCALE)
200
+ img_mean = np.mean(img)
201
+ img_std = np.std(img)
202
+ mean_sum += img_mean
203
+ std_sum += img_std
204
+
205
+ avg_mean = mean_sum / num_images
206
+ avg_std = std_sum / num_images
207
+ stats_dict = {
208
+ 'avg_mean': avg_mean,
209
+ 'avg_std': avg_std,
210
+ }
211
+ return stats_dict
212
+
213
+
214
+ class PcaDataFilter(DataFilter):
215
+ _OPTIM_NUM_COMPONENTS = 4
216
+ _OPTIM_ERROR_THRESH = 87
217
+
218
+ def __init__(self, console_output: bool = False):
219
+ super().__init__()
220
+ self.console_output = console_output
221
+
222
+ @visualize()
223
+ @save_to_file()
224
+ def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
225
+ extracted_paths = self._extract_outliers_with_pca(data_dir)
226
+ self.paths += extracted_paths
227
+ return extracted_paths
228
+
229
+ def clear(self) -> None:
230
+ self.paths.clear()
231
+ if self.console_output:
232
+ print(f'[{self.__class__.__name__}]: Paths memory cleared.')
233
+
234
+ def filter(self) -> bool:
235
+ has_error = False
236
+ for path in self.paths:
237
+ if not Path(path).exists():
238
+ has_error = True
239
+ continue
240
+ os.remove(path)
241
+ if self.console_output:
242
+ print(f'[{self.__class__.__name__}]: Removed {path}')
243
+ return has_error
244
+
245
+ @staticmethod
246
+ def _extract_outliers_with_pca(dir_: str | Path) -> list[str]:
247
+ x, _, img_paths = PcaDataFilter._load_data(dir_)
248
+ x = np.array(x)
249
+ num_samples, height, width = x.shape
250
+ X_flattened = x.reshape(num_samples, height * width)
251
+
252
+ outlier_indices = PcaDataFilter._detect_outliers_with_pca(X_flattened,
253
+ PcaDataFilter._OPTIM_NUM_COMPONENTS,
254
+ PcaDataFilter._OPTIM_ERROR_THRESH)
255
+ img_paths_to_remove = [img_paths[i] for i in outlier_indices.tolist()]
256
+ return img_paths_to_remove
257
+
258
+ @staticmethod
259
+ def _detect_outliers_with_pca(orig_data: np.ndarray,
260
+ num_components: int,
261
+ error_thresh: float) -> np.ndarray:
262
+ pca = PCA(n_components=num_components)
263
+ X_reduced = pca.fit_transform(orig_data)
264
+
265
+ X_reconstructed = pca.inverse_transform(X_reduced)
266
+ reconstruction_errors = np.sqrt(np.mean((orig_data - X_reconstructed) ** 2, axis=1))
267
+
268
+ outlier_indices = np.where(reconstruction_errors > error_thresh)[0]
269
+ return outlier_indices
270
+
271
+
272
+ class DHashDuplicateFilter(DataFilter):
273
+ def __init__(self, hash_size: int = 8, console_output: bool = False):
274
+ super().__init__()
275
+ self.hash_size = hash_size
276
+ self.console_output = console_output
277
+
278
+ @visualize(60)
279
+ @save_to_file()
280
+ def extract(self, data_dir: str | Path, visualize_: bool, to_file: bool) -> list[str]:
281
+ _, _, paths = self._load_data(data_dir)
282
+ hashes = set()
283
+ duplicates = []
284
+
285
+ for path in paths:
286
+ hash_ = imagehash.dhash(Image.open(path), self.hash_size)
287
+ if hash_ in hashes:
288
+ duplicates.append(path)
289
+ if self.console_output:
290
+ print(f'[{self.__class__.__name__}]: Duplicate found at {path}')
291
+ else:
292
+ hashes.add(hash_)
293
+
294
+ self.paths += duplicates
295
+ return duplicates
296
+
297
+ def clear(self) -> None:
298
+ self.paths.clear()
299
+ if self.console_output:
300
+ print(f'[{self.__class__.__name__}]: Paths memory cleared.')
301
+
302
+ def filter(self) -> bool:
303
+ has_error = False
304
+ for path in self.paths:
305
+ if not Path(path).exists():
306
+ has_error = True
307
+ continue
308
+ os.remove(path)
309
+ if self.console_output:
310
+ print(f'[{self.__class__.__name__}]: Removed {path}')
311
+ return has_error
312
+
313
+
314
+ if __name__ == '__main__':
315
+ dataset_dir = Path('./dataset')
316
+
317
+ stats_filter = StatsDataFilter(_DATASET_AVG_MEAN, _DATASET_AVG_STD, True)
318
+ pca_filter = PcaDataFilter(console_output=True)
319
+ duplicate_filter = DHashDuplicateFilter(console_output=True)
320
+
321
+ compose = DataFilterCompose.build([
322
+ stats_filter,
323
+ pca_filter,
324
+ duplicate_filter
325
+ ])
326
+
327
+ # You may set the value of visualize_ or to_file parameters to True
328
+ # to plot extracted images or save paths to a file.
329
+ stats_filter.extract(dataset_dir, visualize_=False, to_file=False)
330
+
331
+ # WARNING: uncommenting the line below will irreversibly remove dataset files
332
+ # compose.filter()
face_detector.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from facenet_pytorch import MTCNN
2
+ import torch
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+
7
+ class FaceDetector:
8
+ def __init__(self):
9
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
10
+ self.model = MTCNN(keep_all=True, post_process=False, device=device)
11
+
12
+ def detect_bboxes(self, img: Image.Image) -> np.ndarray:
13
+ boxes, probs = self.model.detect(img)
14
+ return boxes
15
+
16
+ def extract_faces(self, img: Image.Image, bboxes) -> torch.Tensor:
17
+ face_images_tensors = self.model.extract(img, bboxes, save_path='dev/extracted/extracted.jpg')
18
+ return face_images_tensors
fer.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from face_detector import FaceDetector
2
+ from model_small import ResNet18
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from PIL import Image
7
+ from util import draw_bboxes, draw_label_on_bbox
8
+ import torchvision.transforms as T
9
+
10
+
11
+ class FaceExpressionRecognizer:
12
+
13
+ _DATASET_MEAN = 0.5077385902404785
14
+ _DATASET_STD = 0.255077600479126
15
+
16
+ def __init__(self):
17
+ self.face_detector = FaceDetector()
18
+ self.fer_classifier = _make_fer_classifier()
19
+ self.post_process = T.Compose([
20
+ T.Resize((48, 48)),
21
+ T.Grayscale(),
22
+ T.ConvertImageDtype(torch.float32),
23
+ T.Normalize(FaceExpressionRecognizer._DATASET_MEAN, FaceExpressionRecognizer._DATASET_STD)
24
+ ])
25
+ self.idx_to_label = {
26
+ 0: 'angry',
27
+ 1: 'disgust',
28
+ 2: 'fear',
29
+ 3: 'happy',
30
+ 4: 'neutral',
31
+ 5: 'sad',
32
+ 6: 'surprise',
33
+ }
34
+
35
+ def handle_frame(self, image: Image.Image) -> Image.Image:
36
+ bboxes = self.face_detector.detect_bboxes(image)
37
+ if bboxes is None:
38
+ return image
39
+
40
+ extracted_faces = self.face_detector.extract_faces(image, bboxes)
41
+ extracted_faces = self.post_process(extracted_faces)
42
+ preds = self.fer_classifier(extracted_faces).argmax(dim=1)
43
+ print(f'Preds: {preds}')
44
+ preds = preds.tolist()
45
+
46
+ img_w_boxes = draw_bboxes(image.copy(), bboxes, (255, 0, 0))
47
+ image_w_boxes_arr = np.array(img_w_boxes)
48
+ for bbox, pred in zip(bboxes, preds):
49
+ image_w_boxes_arr = draw_label_on_bbox(image_w_boxes_arr, bbox, self.idx_to_label[pred])
50
+ return Image.fromarray(image_w_boxes_arr)
51
+
52
+
53
+ def _make_fer_classifier() -> nn.Module:
54
+ model = ResNet18(1, 7)
55
+ # fer_fc = nn.Linear(256, 7)
56
+ # model = nn.Sequential(*list(model.children())[:-1])
57
+ # model = nn.Sequential(*model, fer_fc)
58
+ model.load_state_dict(torch.load('./saved_models/weighted_sampler200_fer_model.pth', map_location=torch.device('cpu')))
59
+ return model
model.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class ResNet18(nn.Module):
6
+ def __init__(self, in_channels: int, num_classes: int):
7
+ super().__init__()
8
+ self.initial_conv = nn.Conv2d(
9
+ in_channels=in_channels,
10
+ out_channels=64,
11
+ kernel_size=7,
12
+ stride=2,
13
+ padding=3,
14
+ bias=False,
15
+ )
16
+ self.bn = nn.BatchNorm2d(64)
17
+ self.relu = nn.ReLU(inplace=True)
18
+ self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
19
+
20
+ self.layer1 = nn.Sequential(BasicBlock(64, 64), BasicBlock(64, 64))
21
+ self.layer2 = nn.Sequential(
22
+ BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)),
23
+ BasicBlock(128, 128),
24
+ )
25
+ self.layer3 = nn.Sequential(
26
+ BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)),
27
+ BasicBlock(256, 256),
28
+ )
29
+ self.layer4 = nn.Sequential(
30
+ BasicBlock(256, 512, stride=2, downsample=self._downsample(256, 512)),
31
+ BasicBlock(512, 512),
32
+ )
33
+
34
+ self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
35
+ self.drop = nn.Dropout(0.15)
36
+ self.flatten = nn.Flatten(1)
37
+ self.fc = nn.Linear(512, num_classes)
38
+
39
+ @staticmethod
40
+ def _downsample(in_channels: int, out_channels: int) -> nn.Sequential:
41
+ return nn.Sequential(
42
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False),
43
+ nn.BatchNorm2d(out_channels),
44
+ )
45
+
46
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
47
+ x = self.initial_conv(x)
48
+ x = self.bn(x)
49
+ x = self.relu(x)
50
+ x = self.max_pool(x)
51
+
52
+ x = self.layer1(x)
53
+ x = self.layer2(x)
54
+ x = self.layer3(x)
55
+ x = self.layer4(x)
56
+
57
+ x = self.avg_pool(x)
58
+ x = self.drop(x) # because linear layers tends to overfit more
59
+ x = self.flatten(x)
60
+ x = self.fc(x)
61
+ return x
62
+
63
+
64
+ class BasicBlock(nn.Module):
65
+ def __init__(
66
+ self,
67
+ in_channels: int,
68
+ out_channels: int,
69
+ stride: int = 1,
70
+ downsample: nn.Module = None,
71
+ ):
72
+ super().__init__()
73
+ self.downsample = downsample
74
+ self.conv1 = nn.Conv2d(
75
+ in_channels,
76
+ out_channels,
77
+ kernel_size=3,
78
+ stride=stride,
79
+ padding=1,
80
+ bias=False,
81
+ )
82
+ self.bn1 = nn.BatchNorm2d(out_channels)
83
+ self.relu = nn.ReLU(inplace=True)
84
+ self.conv2 = nn.Conv2d(
85
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False
86
+ )
87
+ self.bn2 = nn.BatchNorm2d(out_channels)
88
+
89
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
90
+ identity = x
91
+
92
+ output = self.conv1(x)
93
+ output = self.bn1(output)
94
+ output = self.relu(output)
95
+ output = self.conv2(output)
96
+ output = self.bn2(output)
97
+
98
+ if self.downsample is not None:
99
+ identity = self.downsample(x)
100
+ output += identity
101
+ output = self.relu(output)
102
+ return output
model_small.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class ResNet18(nn.Module):
6
+ def __init__(self, in_channels: int, num_classes: int):
7
+ super().__init__()
8
+ self.initial_conv = nn.Conv2d(in_channels=in_channels,
9
+ out_channels=32,
10
+ kernel_size=5,
11
+ stride=1,
12
+ padding=2,
13
+ bias=False)
14
+ self.bn = nn.BatchNorm2d(32)
15
+ self.relu = nn.ReLU(inplace=True)
16
+ self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
17
+
18
+ self.layer1 = nn.Sequential(
19
+ BasicBlock(32, 32),
20
+ BasicBlock(32, 32)
21
+ )
22
+ self.layer2 = nn.Sequential(
23
+ BasicBlock(32, 64, stride=2, downsample=self._downsample(32, 64)),
24
+ BasicBlock(64, 64)
25
+ )
26
+ self.layer3 = nn.Sequential(
27
+ BasicBlock(64, 128, stride=2, downsample=self._downsample(64, 128)),
28
+ BasicBlock(128, 128)
29
+ )
30
+ self.layer4 = nn.Sequential(
31
+ BasicBlock(128, 256, stride=2, downsample=self._downsample(128, 256)),
32
+ BasicBlock(256, 256)
33
+ )
34
+
35
+ self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
36
+ self.drop = nn.Dropout(0.15)
37
+ self.flatten = nn.Flatten(1)
38
+ self.fc = nn.Linear(256, num_classes)
39
+
40
+ @staticmethod
41
+ def _downsample(in_channels: int, out_channels: int) -> nn.Sequential:
42
+ return nn.Sequential(
43
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2, bias=False),
44
+ nn.BatchNorm2d(out_channels)
45
+ )
46
+
47
+ def forward(self, x):
48
+ x = self.initial_conv(x)
49
+ x = self.bn(x)
50
+ x = self.relu(x)
51
+ x = self.max_pool(x)
52
+
53
+ x = self.layer1(x)
54
+ x = self.layer2(x)
55
+ x = self.layer3(x)
56
+ x = self.layer4(x)
57
+
58
+ x = self.avg_pool(x)
59
+ x = self.drop(x)
60
+ x = self.flatten(x)
61
+ x = self.fc(x)
62
+ return x
63
+
64
+
65
+ class BasicBlock(nn.Module):
66
+ def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
67
+ super().__init__()
68
+ self.downsample = downsample
69
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
70
+ self.bn1 = nn.BatchNorm2d(out_channels)
71
+ self.relu = nn.ReLU(inplace=True)
72
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
73
+ self.bn2 = nn.BatchNorm2d(out_channels)
74
+
75
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
76
+ identity = x
77
+
78
+ output = self.conv1(x)
79
+ output = self.bn1(output)
80
+ output = self.relu(output)
81
+ output = self.conv2(output)
82
+ output = self.bn2(output)
83
+
84
+ if self.downsample is not None:
85
+ identity = self.downsample(x)
86
+ output += identity
87
+ output = self.relu(output)
88
+ return output
preprocessing.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import SimpleNamespace
2
+
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+ from torchvision.datasets import ImageFolder
6
+ from torchvision.transforms import v2
7
+
8
+ DATASET_MEAN = 0.5077385902404785
9
+ DATASET_STD = 0.255077600479126
10
+
11
+
12
+ class PreprocessedImageFolder(ImageFolder):
13
+ def __init__(self, root, transform=None):
14
+ super().__init__(root, transform=transform)
15
+ self.preprocess = v2.Compose(
16
+ [
17
+ v2.Grayscale(),
18
+ v2.PILToTensor(),
19
+ v2.ToDtype(torch.float32, scale=True),
20
+ v2.Normalize(mean=(DATASET_MEAN,), std=(DATASET_STD,)),
21
+ ]
22
+ )
23
+
24
+ processed_samples = []
25
+ for path, target in self.samples:
26
+ sample = self.loader(path)
27
+ processed_sample = self.preprocess(sample)
28
+ processed_samples.append((processed_sample, target))
29
+
30
+ self.samples = processed_samples
31
+
32
+ def __getitem__(self, index):
33
+ sample, target = self.samples[index]
34
+ if self.transform is not None:
35
+ sample = self.transform(sample)
36
+ return sample, target
37
+
38
+
39
+ augmentations = v2.Compose(
40
+ [
41
+ v2.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
42
+ v2.RandomHorizontalFlip(),
43
+ v2.RandomResizedCrop(size=48, scale=(0.9, 1.1), antialias=True),
44
+ v2.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1)),
45
+ v2.GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 1.0)),
46
+ ]
47
+ )
48
+
49
+
50
+ def make_dls(train_ds, valid_ds, batch_size=64, num_workers=2):
51
+ train_dl = DataLoader(
52
+ train_ds,
53
+ batch_size=batch_size,
54
+ shuffle=True,
55
+ num_workers=num_workers,
56
+ pin_memory=True,
57
+ persistent_workers=True,
58
+ )
59
+ valid_dl = DataLoader(
60
+ valid_ds,
61
+ batch_size=batch_size,
62
+ shuffle=True,
63
+ num_workers=num_workers,
64
+ pin_memory=True,
65
+ persistent_workers=True,
66
+ )
67
+
68
+ dls = SimpleNamespace(**{"train": train_dl, "valid": valid_dl})
69
+ return dls
train.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+
5
+ from model import ResNet18
6
+ from preprocessing import PreprocessedImageFolder, augmentations, make_dls
7
+ from trainer import (
8
+ LRFinderCB,
9
+ ActivationStatsCB,
10
+ AugmentCB,
11
+ DeviceCB,
12
+ MultiClassAccuracyCB,
13
+ ProgressCB,
14
+ Trainer,
15
+ WandBCB,
16
+ )
17
+
18
+ device = "cuda" if torch.cuda.is_available() else "cpu"
19
+
20
+ train_ds = PreprocessedImageFolder("./dataset/train", None)
21
+ valid_ds = PreprocessedImageFolder("./dataset/test", None)
22
+ dls = make_dls(train_ds, valid_ds, batch_size=32, num_workers=2)
23
+
24
+ model = ResNet18(in_channels=1, num_classes=len(train_ds.classes))
25
+
26
+
27
+ # lr_find = LRFinderCB(min_lr=1e-4, max_lr=0.1, max_mult=3)
28
+ # act_stats = ActivationStatsCB(mod_filter=lambda x: isinstance(x, nn.Conv2d) or isinstance(x, nn.Linear), with_wandb=True) # for debugging purposes
29
+ progress = ProgressCB(in_notebook=False)
30
+ wandb_cb = WandBCB(proj_name="test", model_path="./model.pth")
31
+ augment = AugmentCB(device=device, transform=augmentations)
32
+ acc_cb = MultiClassAccuracyCB(with_wandb=True)
33
+
34
+ trainer = Trainer(
35
+ model,
36
+ dls,
37
+ F.cross_entropy,
38
+ torch.optim.SGD,
39
+ lr=1e-4,
40
+ cbs=[DeviceCB(device), augment, progress, wandb_cb, acc_cb],
41
+ ) # act_stats, lr_find
42
+ trainer.fit(5, True, True)
43
+
44
+ # TODO: saving plots to wandb
45
+ progress.plot_losses(save=True)
46
+ # act_stats.plot_stats(save=True)
47
+ # act_stats.color_dim(save=True)
48
+ # act_stats.dead_chart(save=True)
49
+
50
+ # torch.save(trainer.model.state_dict(), "./model.pth") # done by WandBCB
trainer.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code inspired by Fastai "Practical Deep Learning Part 2" Learner
2
+ import math
3
+ import os
4
+ from functools import partial
5
+ from operator import attrgetter
6
+
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import wandb
12
+
13
+
14
+ class CancelFitException(Exception):
15
+ pass
16
+
17
+
18
+ class CancelBatchException(Exception):
19
+ pass
20
+
21
+
22
+ class CancelEpochException(Exception):
23
+ pass
24
+
25
+
26
+ class Callback:
27
+ order = 0
28
+
29
+
30
+ class with_cbs:
31
+ """Decorator that wraps function and calls certain callbacks before/after that function."""
32
+
33
+ def __init__(self, nm):
34
+ self.nm = nm
35
+
36
+ def __call__(self, f):
37
+ def _f(o, *args, **kwargs):
38
+ try:
39
+ o.callback(f"before_{self.nm}")
40
+ f(o, *args, **kwargs)
41
+ o.callback(f"after_{self.nm}")
42
+ except globals()[f"Cancel{self.nm.title()}Exception"]:
43
+ pass
44
+ finally:
45
+ o.callback(f"cleanup_{self.nm}")
46
+
47
+ return _f
48
+
49
+
50
+ def run_cbs(cbs, method_nm, trainer=None):
51
+ for cb in sorted(cbs, key=attrgetter("order")): # sort callbacks by 'order'
52
+ method = getattr(
53
+ cb, method_nm, None
54
+ ) # get method from callback e.g. `before_batch`
55
+ if method is not None:
56
+ method(trainer) # if callback has such method then call it
57
+
58
+
59
+ class Trainer:
60
+ """Trainer with callbacks"""
61
+
62
+ def __init__(
63
+ self,
64
+ model,
65
+ dls=(0,),
66
+ loss_func=F.mse_loss,
67
+ opt_func=torch.optim.SGD,
68
+ lr=0.1,
69
+ cbs=[],
70
+ n_inp=1,
71
+ ):
72
+ self.model = model
73
+ self.dls = dls
74
+ self.loss_func = loss_func
75
+ self.opt_func = opt_func
76
+ self.lr = lr
77
+ self.cbs = cbs
78
+ self.n_inp = n_inp
79
+
80
+ @with_cbs("batch")
81
+ def _one_batch(self):
82
+ self.predict()
83
+ self.callback("after_predict")
84
+ self.get_loss()
85
+ self.callback("after_loss")
86
+ if self.training:
87
+ self.backward()
88
+ self.callback("after_backward")
89
+ self.step()
90
+ self.callback("after_step")
91
+ self.zero_grad()
92
+
93
+ @with_cbs("epoch")
94
+ def _one_epoch(self):
95
+ for self.iter, self.batch in enumerate(self.dl):
96
+ self._one_batch()
97
+
98
+ def one_epoch(self, training):
99
+ self.model.train(training)
100
+ self.dl = self.dls.train if training else self.dls.valid
101
+ self._one_epoch()
102
+
103
+ @with_cbs("fit")
104
+ def _fit(self, train, valid):
105
+ for epoch in range(self.n_epochs):
106
+ if train:
107
+ self.one_epoch(True)
108
+ if valid:
109
+ torch.no_grad()(self.one_epoch)(False)
110
+
111
+ def fit(self, n_epochs=1, train=True, valid=True, cbs=None, lr=None):
112
+ self.n_epochs = n_epochs
113
+ if lr is not None:
114
+ self.lr = lr
115
+ self.opt = self.opt_func(self.model.parameters(), self.lr)
116
+ self._fit(train, valid)
117
+
118
+ def callback(self, method_nm):
119
+ run_cbs(self.cbs, method_nm, self)
120
+
121
+ def predict(self, x=None):
122
+ if x is not None:
123
+ return self.model(x)
124
+ self.preds = self.model(*self.batch[: self.n_inp])
125
+
126
+ def get_loss(self):
127
+ self.loss = self.loss_func(self.preds, *self.batch[self.n_inp :])
128
+
129
+ def backward(self):
130
+ self.loss.backward()
131
+
132
+ def step(self):
133
+ self.opt.step()
134
+
135
+ def zero_grad(self):
136
+ self.opt.zero_grad()
137
+
138
+ @property
139
+ def training(self):
140
+ return self.model.training
141
+
142
+
143
+ class ProgressCB(Callback):
144
+ """Adds progress bar to Trainer and plotting loss curves after training."""
145
+
146
+ def __init__(self, in_notebook=False):
147
+ super().__init__()
148
+ self.train_loss = []
149
+ self.valid_loss = []
150
+ self.in_notebook = in_notebook
151
+
152
+ def before_fit(self, trainer):
153
+ if self.in_notebook:
154
+ from tqdm.notebook import tqdm
155
+ else:
156
+ from tqdm import tqdm
157
+ self.pbar = tqdm(total=trainer.n_epochs)
158
+
159
+ def after_epoch(self, trainer):
160
+ if trainer.training:
161
+ self.pbar.update(1)
162
+
163
+ def after_loss(self, trainer):
164
+ if trainer.training:
165
+ self.train_loss.append(trainer.loss.item())
166
+ tmp_train_loss = (
167
+ np.mean(self.train_loss[-10:]) if len(self.train_loss) > 10 else 0
168
+ )
169
+ tmp_valid_loss = (
170
+ np.mean(self.valid_loss[-len(trainer.dls.valid) :])
171
+ if len(self.valid_loss) > 0
172
+ else 0
173
+ )
174
+ self.pbar.set_description(
175
+ f"train loss: {tmp_train_loss:.3f} | valid loss: {tmp_valid_loss:.3f}"
176
+ )
177
+ else:
178
+ self.valid_loss.append(trainer.loss.item())
179
+
180
+ def after_fit(self, trainer):
181
+ self.pbar.close()
182
+
183
+ def plot_losses(self, save=True):
184
+ fig, ax = plt.subplots(1, 2, figsize=(12, 4))
185
+ ax[0].plot(self.train_loss)
186
+ ax[0].set_title("train loss")
187
+ ax[1].plot(self.valid_loss)
188
+ ax[1].set_title("valid loss")
189
+ if save:
190
+ if not os.path.exists("./plots"):
191
+ os.makedirs("./plots")
192
+ plt.savefig("./plots/losses.png")
193
+ else:
194
+ plt.show()
195
+
196
+
197
+ class DeviceCB(Callback):
198
+ """Moves model and batches to device"""
199
+
200
+ def __init__(self, device="cpu"):
201
+ self.device = device
202
+
203
+ def before_fit(self, trainer):
204
+ if hasattr(trainer.model, "to"):
205
+ trainer.model.to(self.device)
206
+
207
+ def before_batch(self, trainer):
208
+ trainer.batch = tuple(t.to(self.device) for t in trainer.batch)
209
+
210
+
211
+ class Hook:
212
+ """Registers PyTorch forward hook with provided function"""
213
+
214
+ def __init__(self, name, mod, f):
215
+ self.hook = mod.register_forward_hook(partial(f, self, name))
216
+
217
+ def remove(self):
218
+ self.hook.remove()
219
+
220
+ def __del__(self):
221
+ self.remove()
222
+
223
+
224
+ class Hooks(list):
225
+ """List of hooks"""
226
+
227
+ def __init__(self, mods, f):
228
+ super().__init__([Hook(n, m, f) for n, m in mods])
229
+
230
+ def __enter__(self, *args):
231
+ return self
232
+
233
+ def __exit__(self, *args):
234
+ self.remove()
235
+
236
+ def __del__(self):
237
+ self.remove()
238
+
239
+ def __delitem__(self, i):
240
+ self[i].remove()
241
+ super().__delitem__(i)
242
+
243
+ def remove(self):
244
+ for h in self:
245
+ h.remove()
246
+
247
+
248
+ class HooksCB(Callback):
249
+ """Appends hooks with some `hookfunc` to selected layers filtered by `mod_filter`."""
250
+
251
+ def __init__(self, hookfunc, mod_filter=lambda x: True):
252
+ super().__init__()
253
+ self.hookfunc = hookfunc
254
+ self.mod_filter = mod_filter
255
+
256
+ def before_fit(self, trainer):
257
+ mods = [
258
+ (name, mod)
259
+ for name, mod in trainer.model.named_modules()
260
+ if self.mod_filter(mod)
261
+ ]
262
+ self.hooks = Hooks(mods, partial(self._hookfunc, trainer.training))
263
+
264
+ def _hookfunc(self, training, *args, **kwargs):
265
+ if training:
266
+ self.hookfunc(*args, **kwargs)
267
+
268
+ def after_fit(self, trainer):
269
+ self.hooks.remove()
270
+
271
+ def __iter__(self):
272
+ return iter(self.hooks)
273
+
274
+ def __len__(self):
275
+ return len(self.hooks)
276
+
277
+
278
+ def append_stats(with_wandb, hook, name, mod, inp, outp):
279
+ if not hasattr(hook, "stats"):
280
+ hook.stats = {"mean": [], "std": [], "abs": []}
281
+ acts = outp.detach().cpu()
282
+ hook.stats["mean"].append(acts.mean().item())
283
+ hook.stats["std"].append(acts.std().item())
284
+ hook.stats["abs"].append(acts.abs().histc(40, 0, 10).tolist())
285
+ if with_wandb:
286
+ wandb.log(
287
+ {
288
+ f"{name}/mean": acts.mean().item(),
289
+ f"{name}/std": acts.std().item(),
290
+ f"{name}/abs": wandb.Histogram(acts.abs().histc(40, 0, 10).tolist()),
291
+ },
292
+ commit=False,
293
+ )
294
+
295
+
296
+ def get_grid(n, figsize):
297
+ return plt.subplots(round(n / 2), 2, figsize=figsize)
298
+
299
+
300
+ class WandBCB(Callback):
301
+ """Inits and logs to W&B. Every `wandb.log()` outside this callback should have property `commit=False` because this callback gathers all logs in given batch."""
302
+
303
+ order = math.inf # make sure that this callback will be called last
304
+
305
+ def __init__(
306
+ self, proj_name, model_path, run_name=None, notes=None, **additional_config
307
+ ):
308
+ self.proj_name = proj_name
309
+ self.run_name = run_name
310
+ self.model_path = model_path
311
+ self.notes = notes
312
+ self.additional_config = additional_config
313
+
314
+ def before_fit(self, trainer):
315
+ info = dict(
316
+ project=self.proj_name,
317
+ config={"lr": trainer.lr, "n_epochs": trainer.n_epochs},
318
+ )
319
+ if self.run_name is not None:
320
+ info["name"] = self.run_name
321
+ if self.notes is not None:
322
+ info["notes"] = self.notes
323
+ if self.additional_config is not None:
324
+ info["config"] = {**info["config"], **self.additional_config}
325
+
326
+ wandb.init(**info)
327
+ wandb.watch(trainer.model, log="all")
328
+
329
+ def after_loss(self, trainer):
330
+ if trainer.training:
331
+ wandb.log({"loss/train": trainer.loss.item()}, commit=False)
332
+ else:
333
+ wandb.log({"loss/valid": trainer.loss.item()}, commit=False)
334
+
335
+ def after_batch(self, trainer):
336
+ wandb.log({}, commit=True)
337
+
338
+ def after_fit(self, trainer):
339
+ torch.save(trainer.model.state_dict(), self.model_path)
340
+ wandb.save(self.model_path)
341
+ wandb.finish()
342
+
343
+
344
+ class ActivationStatsCB(HooksCB):
345
+ """Stores activation statistics of selected modules. Recommended only for debugging or visualizations, not for actual training because it significantly slows down training."""
346
+
347
+ def __init__(self, mod_filter=lambda x: x, with_wandb=False):
348
+ super().__init__(partial(append_stats, with_wandb), mod_filter)
349
+
350
+ def plot_stats(self, save=True): # plot output means & std devs of each module
351
+ fig, axes = get_grid(2, figsize=(20, 10))
352
+ for h in self.hooks:
353
+ for i, name in enumerate(["mean", "std dev"]):
354
+ axes[i].plot(h.stats[i])
355
+ axes[i].set_title(name)
356
+ plt.legend(range(len(self.hooks)))
357
+ if save:
358
+ if not os.path.exists("./plots"):
359
+ os.makedirs("./plots")
360
+ plt.savefig("./plots/mean_std_stats.png")
361
+ else:
362
+ plt.show()
363
+
364
+ # plot "color dim" that shows abs values of outputs through training time (should be normally distributed - uniform gradient)
365
+ def color_dim(self, save=True):
366
+ fig, axes = get_grid(len(self.hooks), figsize=(20, 10))
367
+ for ax, h in zip(axes.flatten(), self.hooks):
368
+ ax.set_ylim(0, 40)
369
+ ax.imshow(self.get_hist(h), aspect="auto")
370
+ if save:
371
+ if not os.path.exists("./plots"):
372
+ os.makedirs("./plots")
373
+ plt.savefig("./plots/color_dim.png")
374
+ else:
375
+ plt.show()
376
+
377
+ # plot % of dead neurons
378
+ def dead_chart(self, save=True):
379
+ fig, axes = get_grid(len(self.hooks), figsize=(20, 10))
380
+ for ax, h in zip(axes.flatten(), self.hooks):
381
+ ax.plot(self.get_min(h))
382
+ ax.set_ylim(0, 1)
383
+ if save:
384
+ if not os.path.exists("./plots"):
385
+ os.makedirs("./plots")
386
+ plt.savefig("./plots/dead_neurons_perc.png")
387
+ else:
388
+ plt.show()
389
+
390
+ # ratio of dead neurons (activations near 0)
391
+ def get_min(self, h):
392
+ h1 = torch.stack(h.stats[2]).t().float()
393
+ return h1[0] / h1.sum(0)
394
+
395
+ def get_hist(self, h):
396
+ return torch.stack(h.stats[2]).t().float().log1p()
397
+
398
+
399
+ class LRFinderCB(Callback):
400
+ """Suggests an approx. good LR for a model. Usually you should choose value where loss is still decreasing (steepest slope), not the lowest value."""
401
+
402
+ def __init__(self, min_lr=1e-6, max_lr=1, max_mult=3, num_iter=100):
403
+ self.min_lr = min_lr
404
+ self.max_lr = max_lr
405
+ self.max_mult = max_mult
406
+ self.num_iter = num_iter
407
+ self.lr_factor = (max_lr / min_lr) ** (1 / num_iter)
408
+
409
+ def before_fit(self, trainer):
410
+ self.lrs, self.losses = [], []
411
+ self.min = math.inf
412
+ self.i = 0
413
+ trainer.opt.param_groups[0]["lr"] = self.min_lr
414
+
415
+ def before_batch(self, trainer):
416
+ trainer.opt.param_groups[0]["lr"] *= self.lr_factor
417
+
418
+ def after_batch(self, trainer):
419
+ if not trainer.training:
420
+ raise CancelEpochException()
421
+ self.lrs.append(trainer.opt.param_groups[0]["lr"])
422
+ loss = trainer.loss.to("cpu").item()
423
+ self.losses.append(loss)
424
+ if loss < self.min:
425
+ self.min = loss
426
+ self.i += 1
427
+ if (
428
+ math.isnan(loss)
429
+ or (loss > self.min * self.max_mult)
430
+ or (self.i > self.num_iter)
431
+ ):
432
+ raise CancelFitException()
433
+
434
+ def plot_lrs(self, log=True, window=None):
435
+ plt.plot(self.lrs, self.losses) # original loss curve
436
+ plt.title("LR finder")
437
+ if log:
438
+ plt.xscale("log")
439
+
440
+ if window is None:
441
+ window = self.num_iter // 4
442
+
443
+ smoothed_losses = np.convolve(
444
+ self.losses, np.ones(window) / window, mode="valid"
445
+ )
446
+ gradients = np.gradient(smoothed_losses)
447
+ min_gradient_idx = np.argmin(gradients)
448
+ self.best_lr = self.lrs[min_gradient_idx + window // 2]
449
+
450
+ plt.plot(
451
+ self.best_lr, smoothed_losses[min_gradient_idx + window // 2], "ro"
452
+ ) # recomended LR value point
453
+ plt.text(
454
+ self.best_lr,
455
+ smoothed_losses[min_gradient_idx + window // 2],
456
+ f"LR: {self.best_lr:.1e}",
457
+ fontsize=12,
458
+ ha="center",
459
+ va="bottom",
460
+ bbox=dict(facecolor="white"),
461
+ )
462
+
463
+ plt.plot(
464
+ self.lrs[window // 2 : -window // 2 + 1], smoothed_losses, alpha=0.5
465
+ ) # smoothed loss curve
466
+
467
+
468
+ class AugmentCB(Callback):
469
+ """Computes augmentation transformations on device (e.g. GPU) for faster training."""
470
+
471
+ def __init__(self, device="cpu", transform=None):
472
+ super().__init__()
473
+ self.device = device
474
+ self.transform = transform
475
+
476
+ def before_batch(self, trainer):
477
+ trainer.batch = tuple(
478
+ [
479
+ *[self.transform(t) for t in trainer.batch[: trainer.n_inp]],
480
+ *trainer.batch[trainer.n_inp :],
481
+ ]
482
+ )
483
+
484
+
485
+ class MultiClassAccuracyCB(Callback):
486
+ def __init__(self, with_wandb=False):
487
+ self.all_acc = {"train": [], "valid": []}
488
+ self.with_wandb = with_wandb
489
+
490
+ def before_epoch(self, trainer):
491
+ self.acc = []
492
+
493
+ def after_predict(self, trainer):
494
+ self.acc = []
495
+ with torch.inference_mode():
496
+ self.acc.append(
497
+ (
498
+ F.softmax(trainer.preds, dim=1).argmax(1)
499
+ == trainer.batch[trainer.n_inp :][0]
500
+ ).float()
501
+ )
502
+
503
+ def after_epoch(self, trainer):
504
+ final_acc = torch.hstack(self.acc).mean().item()
505
+ if trainer.training:
506
+ if self.with_wandb:
507
+ wandb.log({"accuracy/train": final_acc}, commit=False)
508
+ self.all_acc["train"].append(final_acc)
509
+ else:
510
+ if self.with_wandb:
511
+ wandb.log({"accuracy/valid": final_acc}, commit=False)
512
+ self.all_acc["valid"].append(final_acc)
513
+ self.acc = []
514
+
515
+ def plot_acc(self):
516
+ fig, axes = get_grid(2, (20, 10))
517
+ axes[0].plot(self.all_acc["train"])
518
+ axes[0].set_title("train acc")
519
+ axes[1].plot(self.all_acc["valid"])
520
+ axes[1].set_title("valid acc")
util.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from PIL import Image, ImageDraw
4
+
5
+
6
+ def draw_bboxes(img: Image.Image, boxes, color: tuple[int, int, int]) -> Image.Image:
7
+ img_draw = ImageDraw.Draw(img)
8
+ for box in boxes:
9
+ img_draw.rectangle(box.tolist(), outline=color, width=2)
10
+ return img
11
+
12
+
13
+ def draw_label_on_bbox(image: np.ndarray, bbox: list[float], text: str) -> np.ndarray:
14
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
15
+ left_pos = bbox[0]
16
+ bottom_pos = bbox[1] - 5
17
+ bottom_left_position = (int(left_pos), int(bottom_pos))
18
+ font = cv2.FONT_HERSHEY_SIMPLEX
19
+ font_scale = .9
20
+ color = (255, 0, 0)
21
+ thickness = 2
22
+
23
+ annotated_image = cv2.putText(image, text, bottom_left_position, font, font_scale, color, thickness)
24
+ return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)