Spaces:
Sleeping
Sleeping
File size: 15,547 Bytes
721508a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
# code inspired by Fastai "Practical Deep Learning Part 2" Learner
import math
import os
from functools import partial
from operator import attrgetter
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import wandb
class CancelFitException(Exception):
pass
class CancelBatchException(Exception):
pass
class CancelEpochException(Exception):
pass
class Callback:
order = 0
class with_cbs:
"""Decorator that wraps function and calls certain callbacks before/after that function."""
def __init__(self, nm):
self.nm = nm
def __call__(self, f):
def _f(o, *args, **kwargs):
try:
o.callback(f"before_{self.nm}")
f(o, *args, **kwargs)
o.callback(f"after_{self.nm}")
except globals()[f"Cancel{self.nm.title()}Exception"]:
pass
finally:
o.callback(f"cleanup_{self.nm}")
return _f
def run_cbs(cbs, method_nm, trainer=None):
for cb in sorted(cbs, key=attrgetter("order")): # sort callbacks by 'order'
method = getattr(
cb, method_nm, None
) # get method from callback e.g. `before_batch`
if method is not None:
method(trainer) # if callback has such method then call it
class Trainer:
"""Trainer with callbacks"""
def __init__(
self,
model,
dls=(0,),
loss_func=F.mse_loss,
opt_func=torch.optim.SGD,
lr=0.1,
cbs=[],
n_inp=1,
):
self.model = model
self.dls = dls
self.loss_func = loss_func
self.opt_func = opt_func
self.lr = lr
self.cbs = cbs
self.n_inp = n_inp
@with_cbs("batch")
def _one_batch(self):
self.predict()
self.callback("after_predict")
self.get_loss()
self.callback("after_loss")
if self.training:
self.backward()
self.callback("after_backward")
self.step()
self.callback("after_step")
self.zero_grad()
@with_cbs("epoch")
def _one_epoch(self):
for self.iter, self.batch in enumerate(self.dl):
self._one_batch()
def one_epoch(self, training):
self.model.train(training)
self.dl = self.dls.train if training else self.dls.valid
self._one_epoch()
@with_cbs("fit")
def _fit(self, train, valid):
for epoch in range(self.n_epochs):
if train:
self.one_epoch(True)
if valid:
torch.no_grad()(self.one_epoch)(False)
def fit(self, n_epochs=1, train=True, valid=True, cbs=None, lr=None):
self.n_epochs = n_epochs
if lr is not None:
self.lr = lr
self.opt = self.opt_func(self.model.parameters(), self.lr)
self._fit(train, valid)
def callback(self, method_nm):
run_cbs(self.cbs, method_nm, self)
def predict(self, x=None):
if x is not None:
return self.model(x)
self.preds = self.model(*self.batch[: self.n_inp])
def get_loss(self):
self.loss = self.loss_func(self.preds, *self.batch[self.n_inp :])
def backward(self):
self.loss.backward()
def step(self):
self.opt.step()
def zero_grad(self):
self.opt.zero_grad()
@property
def training(self):
return self.model.training
class ProgressCB(Callback):
"""Adds progress bar to Trainer and plotting loss curves after training."""
def __init__(self, in_notebook=False):
super().__init__()
self.train_loss = []
self.valid_loss = []
self.in_notebook = in_notebook
def before_fit(self, trainer):
if self.in_notebook:
from tqdm.notebook import tqdm
else:
from tqdm import tqdm
self.pbar = tqdm(total=trainer.n_epochs)
def after_epoch(self, trainer):
if trainer.training:
self.pbar.update(1)
def after_loss(self, trainer):
if trainer.training:
self.train_loss.append(trainer.loss.item())
tmp_train_loss = (
np.mean(self.train_loss[-10:]) if len(self.train_loss) > 10 else 0
)
tmp_valid_loss = (
np.mean(self.valid_loss[-len(trainer.dls.valid) :])
if len(self.valid_loss) > 0
else 0
)
self.pbar.set_description(
f"train loss: {tmp_train_loss:.3f} | valid loss: {tmp_valid_loss:.3f}"
)
else:
self.valid_loss.append(trainer.loss.item())
def after_fit(self, trainer):
self.pbar.close()
def plot_losses(self, save=True):
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
ax[0].plot(self.train_loss)
ax[0].set_title("train loss")
ax[1].plot(self.valid_loss)
ax[1].set_title("valid loss")
if save:
if not os.path.exists("./plots"):
os.makedirs("./plots")
plt.savefig("./plots/losses.png")
else:
plt.show()
class DeviceCB(Callback):
"""Moves model and batches to device"""
def __init__(self, device="cpu"):
self.device = device
def before_fit(self, trainer):
if hasattr(trainer.model, "to"):
trainer.model.to(self.device)
def before_batch(self, trainer):
trainer.batch = tuple(t.to(self.device) for t in trainer.batch)
class Hook:
"""Registers PyTorch forward hook with provided function"""
def __init__(self, name, mod, f):
self.hook = mod.register_forward_hook(partial(f, self, name))
def remove(self):
self.hook.remove()
def __del__(self):
self.remove()
class Hooks(list):
"""List of hooks"""
def __init__(self, mods, f):
super().__init__([Hook(n, m, f) for n, m in mods])
def __enter__(self, *args):
return self
def __exit__(self, *args):
self.remove()
def __del__(self):
self.remove()
def __delitem__(self, i):
self[i].remove()
super().__delitem__(i)
def remove(self):
for h in self:
h.remove()
class HooksCB(Callback):
"""Appends hooks with some `hookfunc` to selected layers filtered by `mod_filter`."""
def __init__(self, hookfunc, mod_filter=lambda x: True):
super().__init__()
self.hookfunc = hookfunc
self.mod_filter = mod_filter
def before_fit(self, trainer):
mods = [
(name, mod)
for name, mod in trainer.model.named_modules()
if self.mod_filter(mod)
]
self.hooks = Hooks(mods, partial(self._hookfunc, trainer.training))
def _hookfunc(self, training, *args, **kwargs):
if training:
self.hookfunc(*args, **kwargs)
def after_fit(self, trainer):
self.hooks.remove()
def __iter__(self):
return iter(self.hooks)
def __len__(self):
return len(self.hooks)
def append_stats(with_wandb, hook, name, mod, inp, outp):
if not hasattr(hook, "stats"):
hook.stats = {"mean": [], "std": [], "abs": []}
acts = outp.detach().cpu()
hook.stats["mean"].append(acts.mean().item())
hook.stats["std"].append(acts.std().item())
hook.stats["abs"].append(acts.abs().histc(40, 0, 10).tolist())
if with_wandb:
wandb.log(
{
f"{name}/mean": acts.mean().item(),
f"{name}/std": acts.std().item(),
f"{name}/abs": wandb.Histogram(acts.abs().histc(40, 0, 10).tolist()),
},
commit=False,
)
def get_grid(n, figsize):
return plt.subplots(round(n / 2), 2, figsize=figsize)
class WandBCB(Callback):
"""Inits and logs to W&B. Every `wandb.log()` outside this callback should have property `commit=False` because this callback gathers all logs in given batch."""
order = math.inf # make sure that this callback will be called last
def __init__(
self, proj_name, model_path, run_name=None, notes=None, **additional_config
):
self.proj_name = proj_name
self.run_name = run_name
self.model_path = model_path
self.notes = notes
self.additional_config = additional_config
def before_fit(self, trainer):
info = dict(
project=self.proj_name,
config={"lr": trainer.lr, "n_epochs": trainer.n_epochs},
)
if self.run_name is not None:
info["name"] = self.run_name
if self.notes is not None:
info["notes"] = self.notes
if self.additional_config is not None:
info["config"] = {**info["config"], **self.additional_config}
wandb.init(**info)
wandb.watch(trainer.model, log="all")
def after_loss(self, trainer):
if trainer.training:
wandb.log({"loss/train": trainer.loss.item()}, commit=False)
else:
wandb.log({"loss/valid": trainer.loss.item()}, commit=False)
def after_batch(self, trainer):
wandb.log({}, commit=True)
def after_fit(self, trainer):
torch.save(trainer.model.state_dict(), self.model_path)
wandb.save(self.model_path)
wandb.finish()
class ActivationStatsCB(HooksCB):
"""Stores activation statistics of selected modules. Recommended only for debugging or visualizations, not for actual training because it significantly slows down training."""
def __init__(self, mod_filter=lambda x: x, with_wandb=False):
super().__init__(partial(append_stats, with_wandb), mod_filter)
def plot_stats(self, save=True): # plot output means & std devs of each module
fig, axes = get_grid(2, figsize=(20, 10))
for h in self.hooks:
for i, name in enumerate(["mean", "std dev"]):
axes[i].plot(h.stats[i])
axes[i].set_title(name)
plt.legend(range(len(self.hooks)))
if save:
if not os.path.exists("./plots"):
os.makedirs("./plots")
plt.savefig("./plots/mean_std_stats.png")
else:
plt.show()
# plot "color dim" that shows abs values of outputs through training time (should be normally distributed - uniform gradient)
def color_dim(self, save=True):
fig, axes = get_grid(len(self.hooks), figsize=(20, 10))
for ax, h in zip(axes.flatten(), self.hooks):
ax.set_ylim(0, 40)
ax.imshow(self.get_hist(h), aspect="auto")
if save:
if not os.path.exists("./plots"):
os.makedirs("./plots")
plt.savefig("./plots/color_dim.png")
else:
plt.show()
# plot % of dead neurons
def dead_chart(self, save=True):
fig, axes = get_grid(len(self.hooks), figsize=(20, 10))
for ax, h in zip(axes.flatten(), self.hooks):
ax.plot(self.get_min(h))
ax.set_ylim(0, 1)
if save:
if not os.path.exists("./plots"):
os.makedirs("./plots")
plt.savefig("./plots/dead_neurons_perc.png")
else:
plt.show()
# ratio of dead neurons (activations near 0)
def get_min(self, h):
h1 = torch.stack(h.stats[2]).t().float()
return h1[0] / h1.sum(0)
def get_hist(self, h):
return torch.stack(h.stats[2]).t().float().log1p()
class LRFinderCB(Callback):
"""Suggests an approx. good LR for a model. Usually you should choose value where loss is still decreasing (steepest slope), not the lowest value."""
def __init__(self, min_lr=1e-6, max_lr=1, max_mult=3, num_iter=100):
self.min_lr = min_lr
self.max_lr = max_lr
self.max_mult = max_mult
self.num_iter = num_iter
self.lr_factor = (max_lr / min_lr) ** (1 / num_iter)
def before_fit(self, trainer):
self.lrs, self.losses = [], []
self.min = math.inf
self.i = 0
trainer.opt.param_groups[0]["lr"] = self.min_lr
def before_batch(self, trainer):
trainer.opt.param_groups[0]["lr"] *= self.lr_factor
def after_batch(self, trainer):
if not trainer.training:
raise CancelEpochException()
self.lrs.append(trainer.opt.param_groups[0]["lr"])
loss = trainer.loss.to("cpu").item()
self.losses.append(loss)
if loss < self.min:
self.min = loss
self.i += 1
if (
math.isnan(loss)
or (loss > self.min * self.max_mult)
or (self.i > self.num_iter)
):
raise CancelFitException()
def plot_lrs(self, log=True, window=None):
plt.plot(self.lrs, self.losses) # original loss curve
plt.title("LR finder")
if log:
plt.xscale("log")
if window is None:
window = self.num_iter // 4
smoothed_losses = np.convolve(
self.losses, np.ones(window) / window, mode="valid"
)
gradients = np.gradient(smoothed_losses)
min_gradient_idx = np.argmin(gradients)
self.best_lr = self.lrs[min_gradient_idx + window // 2]
plt.plot(
self.best_lr, smoothed_losses[min_gradient_idx + window // 2], "ro"
) # recomended LR value point
plt.text(
self.best_lr,
smoothed_losses[min_gradient_idx + window // 2],
f"LR: {self.best_lr:.1e}",
fontsize=12,
ha="center",
va="bottom",
bbox=dict(facecolor="white"),
)
plt.plot(
self.lrs[window // 2 : -window // 2 + 1], smoothed_losses, alpha=0.5
) # smoothed loss curve
class AugmentCB(Callback):
"""Computes augmentation transformations on device (e.g. GPU) for faster training."""
def __init__(self, device="cpu", transform=None):
super().__init__()
self.device = device
self.transform = transform
def before_batch(self, trainer):
trainer.batch = tuple(
[
*[self.transform(t) for t in trainer.batch[: trainer.n_inp]],
*trainer.batch[trainer.n_inp :],
]
)
class MultiClassAccuracyCB(Callback):
def __init__(self, with_wandb=False):
self.all_acc = {"train": [], "valid": []}
self.with_wandb = with_wandb
def before_epoch(self, trainer):
self.acc = []
def after_predict(self, trainer):
self.acc = []
with torch.inference_mode():
self.acc.append(
(
F.softmax(trainer.preds, dim=1).argmax(1)
== trainer.batch[trainer.n_inp :][0]
).float()
)
def after_epoch(self, trainer):
final_acc = torch.hstack(self.acc).mean().item()
if trainer.training:
if self.with_wandb:
wandb.log({"accuracy/train": final_acc}, commit=False)
self.all_acc["train"].append(final_acc)
else:
if self.with_wandb:
wandb.log({"accuracy/valid": final_acc}, commit=False)
self.all_acc["valid"].append(final_acc)
self.acc = []
def plot_acc(self):
fig, axes = get_grid(2, (20, 10))
axes[0].plot(self.all_acc["train"])
axes[0].set_title("train acc")
axes[1].plot(self.all_acc["valid"])
axes[1].set_title("valid acc")
|