File size: 6,866 Bytes
52890cd
 
 
 
4a92e3f
21ecff7
443bfbe
52890cd
6258d25
 
 
21ecff7
52890cd
 
4a92e3f
52890cd
5ad4933
443bfbe
52890cd
 
 
 
 
4a92e3f
52890cd
4a92e3f
 
 
52890cd
4a92e3f
 
52890cd
b586a75
7c145bf
4a92e3f
7c145bf
 
dce1973
7c145bf
 
0cb8a1b
8bbae79
52890cd
 
4e3b7ef
d24ebe9
123c5ba
7948fd7
 
 
 
123c5ba
52890cd
 
7948fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52890cd
 
4e3b7ef
52890cd
97e83fa
 
 
08144fa
97e83fa
 
 
 
 
5b0ed96
 
 
 
 
 
 
97e83fa
5b0ed96
 
 
 
 
 
 
 
 
 
 
97e83fa
5b0ed96
97e83fa
5b0ed96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e83fa
 
 
5b0ed96
 
 
97e83fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=120)
def infer(prompt, seed=47622, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt = prompt, 
        width = width,
        height = height,
        num_inference_steps = num_inference_steps, 
        generator = generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return image, seed
 
examples = [
    "a panda holding a bamboo sign that says welcome",
    "Beautiful scene with a bright sunlit valley between a large cliffside mountain and a waterfall flowing down the side into a small stream",
    "A scene full of classic video game characters as stickers on a black water bottle",
    "4k photo of a Dark Forest filled with neon lights, where the air is charged with electromagnetic fields and solar radiation from distant stars. It's a beautiful collision of waves, light, particles and complexity",
    "Mathematically perfect architecture including contrast in both materials and shapes. Utilize smooth gradients for all color transitions",
    "Colorful, whimsical, imaginative 10 course meal spread out on a beautiful hand carved wooden table in a stark modern futuristic city center restaurant",
    "The scene is set in the heart of a bustling metropolis, amidst towering skyscrapers that pierce the night sky like colossal arrows. Neon lights of all hues flicker incessantly, casting an ethereal glow",
    "In a high-tech laboratory, scientists study the effects of electromagnetism on high-energy particles. The room is bathed in an ethereal blue light emanating from advanced equipment humming with power",
    "A futuristic biocity that is located in the former site of Portsmouth, New Hampshire. It has a mix of old and new buildings, green spaces, and water features. It also has six large artificial floating islands off of its coastline,(zenithal angle), coastal city,blue sky and white clouds,the sun is shining brightly,ultra-wide angle,",
    "Depict a breathtaking scene of a meteor rain showering down from a starry night sky. The meteors should vary in size and brightness, streaking across the sky with vibrant tails of light, creating a dazzling display. Below, a serene landscape—perhaps a tranquil lake reflecting the celestial spectacle, or a rugged mountain range—should enhance the sense of wonder. The foreground can include silhouettes of trees or figures gazing up in awe at the cosmic event. The overall atmosphere should evoke feelings of magic and inspiration, capturing the beauty and mystery of the universe."
]


css="""
#body {
    font-family: Arial, sans-serif;
    background-color: #f2f2f2;
}

#gr-col-container {
    margin: 0 auto;
    max-width: 520px;
    padding: 20px;
    background-color: #fff;
    border: 1px solid #ddd;
    border-radius: 10px;
    box-shadow: 0 0 10px rgba(0,0,0,0.1);
}

.gr-markdown {
    font-size: 16px;
    color: #333;
}

.gr-input {
    padding: 10px;
    border: 1px solid #ccc;
    border-radius: 5px;
}

.gr-slider {
    width: 100%;
    padding: 10px;
}

.gr-button {
    background-color: #4CAF50;
    color: #fff;
    padding: 10px 20px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
}

.gr-button:hover {
    background-color: #3e8e41;
}

.gr-accordion {
    background-color: #f2f2f2;
    border: 1px solid #ddd;
    border-radius: 10px;
    padding: 10px;
}

.gr-accordion label {
    font-weight: bold;
    margin-bottom: 10px;
}

.gr-examples {
    padding: 10px;
    background-color: #f2f2f2;
    border: 1px solid #ddd;
    border-radius: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            Generate an image with Flux. Try it out and let me know what you think!
            Expect roughly 60 seconds per generation with it's current backend.
            This can be scaled up over time as needed. Thanks!
            Not for Commercial Use - Apache 2.0 License
        """)

        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()