Spaces:
Running
Running
File size: 15,285 Bytes
36ce9ab 1d10ef9 36ce9ab 9edff67 36ce9ab eea31a0 36ce9ab 4f2ad60 36ce9ab 1d10ef9 c117d7e 1d10ef9 cf2351d 36ce9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import pandas as pd
def load_data():
"""Load and preprocess the data."""
df = pd.read_csv("leaderboard.csv").dropna()
return df
df = load_data()
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
COMMON = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--bg-hover: rgba(30, 30, 45, 0.95);
--text-primary: #ffffff;
--text-secondary: #e2e8f0;
--text-tertiary: #e2e8f0;
--card-bg: rgba(17, 17, 27, 0.4);
--border-color: rgba(31, 41, 55, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-color: #ffffff;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #3B82F6, #A8C4F0);;
--orange-gradient: linear-gradient(45deg, #E05205, #FAD8D2);
--green-gradient: linear-gradient(45deg, #60cc1c, #a0e65e);
--shadow-color: rgba(0, 0, 0, 0.2);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--bg-hover: rgba(229, 231, 235, 0.95);
--text-primary: #1F2937;
--text-secondary: #4B5563;
--text-tertiary: #6B7280;
--card-bg: rgba(249, 250, 251, 0.4);
--border-color: rgba(209, 213, 219, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-color: #4F46E5;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #3B82F6, #A8C4F0);;
--orange-gradient: linear-gradient(45deg, #E05205, #FF8340);
--green-gradient: linear-gradient(45deg, #60cc1c, #a0e65e);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
</style>
"""
# Define constants for the links
PAPER_LINK = "https://arxiv.org/abs/2503.02972"
CODE_LINK = "https://github.com/jkhouja/L2"
BLOG_LINK = "https://www.lesswrong.com/posts/pbt8GYpdip7NkuwGy/are-recent-llms-better-at-reasoning-or-better-at-memorizing"
DATASET_LINK = "https://huggingface.co/datasets/jkhouja/LingOly-TOO"
ADD_MODEL_LINK = (
"https://mail.google.com/mail/?view=cm&fs=1&[email protected]"
"&su=Get%20Model%20Added%20to%20Leaderboard&body=Hi%20there%2C%0A%0AI%20"
"would%20like%20to%20add%20my%20model%20to%20the%20Lingoly-TOO%20Leaderboard.%0A%0AModel%20Name%3A%0AModel%20URL%3A%0A%0ABest%20regards"
)
HEADER_CONTENT = (
COMMON
+ f"""
<style>
.header-wrapper {{
position: relative;
background: var(--bg-primary);
border-radius: 16px;
margin-bottom: 0;
transition: all 0.3s ease;
}}
.header-content {{
max-width: 72rem;
margin: 0 auto;
}}
.title-section {{
position: relative;
display: flex;
align-items: center;
justify-content: center;
margin-bottom: 3rem;
}}
.title-gradient {{
font-size: 5rem;
font-weight: 800;
line-height: 1.25;
background: var(--orange-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 0.5rem;
}}
.title-image {{
position: absolute;
top: 30px;
left: 30px;
width: 100px;
height: 100px;
/* To make it look ok on dark mode */
background-color: #ffffffd0;
padding: 10px;
border-radius: 6px;
}}
.subtitle-white {{
font-size: 5rem;
font-weight: 800;
line-height: 1.1;
color: var(--text-primary);
margin-bottom: 3rem;
transition: color 0.3s ease;
}}
.description {{
color: var(--text-secondary);
font-size: 1.25rem;
line-height: 1.75;
max-width: 800px;
margin: 0 auto;
text-align: center;
transition: color 0.3s ease;
}}
.highlight-question {{
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: block;
margin-top: 1rem;
font-size: 1.5rem;
font-weight: 500;
}}
.metrics-grid {{
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 1.5rem;
margin-top: 4rem;
}}
.metric-card {{
background: var(--bg-secondary);
border: 1px solid var(--border-color);
text-align: center;
border-radius: 1rem;
padding: 2rem;
transition: all 0.3s ease;
align-items: center;
}}
.metric-card:hover {{
transform: translateY(-5px);
border-color: var(--border-hover);
box-shadow: 0 4px 20px var(--shadow-color);
}}
.metric-number {{
font-size: 4rem;
font-weight: 800;
margin-bottom: 1rem;
}}
.metric-blue {{
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}}
.metric-purple {{
background: var(--orange-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}}
.metric-green {{
background: var(--green-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}}
.metric-label {{
color: var(--text-secondary);
font-size: 1.5rem;
margin-bottom: 1.5rem;
transition: color 0.3s ease;
}}
.metric-detail {{
font-size: 1.125rem;
line-height: 1.75;
margin-top: 0.5rem;
transition: color 0.3s ease;
}}
.metric-detail.primary {{
color: var(--accent-color);
}}
.metric-detail.secondary {{
color: var(--text-secondary);
}}
.actions {{
display: flex;
gap: 1rem;
justify-content: center;
margin-top: 3rem;
}}
.action-button {{
display: flex;
align-items: center;
gap: 0.5rem;
padding: 0.75rem 1.5rem;
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 100px;
color: var(--text-primary) !important;
text-decoration: none !important;
font-size: 0.95rem;
transition: all 0.3s ease;
}}
.action-button:hover {{
transform: translateY(-2px);
border-color: var(--accent-color);
background: var(--accent-bg);
}}
@media (max-width: 1024px) {{
.title-image {{
top: 20px;
left: 20px;
width: 80px;
height: 80px;
}}
.title-gradient, .subtitle-white {{
font-size: 3rem;
}}
}}
@media (max-width: 620px) {{
.title-image {{
position: relative;
margin-top: -30px !important;
margin-bottom: 20px !important;
top: 0;
left: 0;
}}
}}
</style>
<div class="header-wrapper">
<div class="header-content">
<div class="title-section">
<div class="title-gradient">LingOly-TOO</div>
</div>
<div class="description">
LingOly-TOO (L2) is a challenging linguistics reasoning benchmark designed to counteracts answering without reasoning (e.g. by guessing or memorizing answers).
We accomplish this by permuting <b>Ling</b>uistics <b>Oly</b>mpiad problems with <b>T</b>emplates and <b>O</b>rthographic <b>O</b>bfuscations. By rewriting (obfuscating) parts of questions and answers, the chance of benchmark leakage in training data is minimized.
<div class="highlight-question">
"How do top LLMs reason on unseen linguistic questions?"
</div>
</div>
</div>
<div class="actions">
<a href="{PAPER_LINK}" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M15 7h3a5 5 0 0 1 5 5 5 5 0 0 1-5 5h-3m-6 0H6a5 5 0 0 1-5-5 5 5 0 0 1 5-5h3"/>
<line x1="8" y1="12" x2="16" y2="12"/>
</svg>
Paper
</a>
<a href="{CODE_LINK}" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"/>
</svg>
Code
</a>
<a href="{BLOG_LINK}" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"/>
<polyline points="7 10 12 15 17 10"/>
<line x1="12" y1="15" x2="12" y2="3"/>
</svg>
Blog
</a>
<a href="{DATASET_LINK}" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"/>
<polyline points="7 10 12 15 17 10"/>
<line x1="12" y1="15" x2="12" y2="3"/>
</svg>
Dataset
</a>
<a href="{ADD_MODEL_LINK}" class="action-button" target="_blank" rel="noopener noreferrer">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M19 3H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2V5a2 2 0 0 0-2-2z"/>
<line x1="12" y1="8" x2="12" y2="16"/>
<line x1="8" y1="12" x2="16" y2="12"/>
</svg>
Add Your Model
</a>
</div>
</div>
"""
)
CARDS = """ <div class="metrics-grid">
<div class="metric-card">
<div class="metric-number metric-blue">11</div>
<div class="metric-label">Total Models</div>
<div class="metric-detail primary">4 Reasoning Models</div>
<div class="metric-detail primary">4 Open Source Models</div>
</div>
<div class="metric-card">
<div class="metric-number metric-purple">82</div>
<div class="metric-label">Linguistics Problems</div>
<div class="metric-detail primary">6 Permutations per problem</div>
<div class="metric-detail primary">Problems from Low-resource Languages</div>
</div>
<div class="metric-card">
<div class="metric-number metric-green">1.2k</div>
<div class="metric-label">Total Questions</div>
<div class="metric-detail primary">Includes Match-Up, Multiple Choice and Completion</div>
</div>
</div>"""
METHODOLOGY = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--text-primary: #ffffff;
--text-secondary: #94A3B8;
--border-primary: rgba(31, 41, 55, 0.5);
--accent-blue: #60A5FA;
--accent-purple: #A78BFA;
--card-hover-bg: rgba(79, 70, 229, 0.1);
--shadow-color: rgba(79, 70, 229, 0.1);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--text-primary: #111827;
--text-secondary: #4B5563;
--border-primary: rgba(209, 213, 219, 0.5);
--accent-blue: #3B82F6;
--accent-purple: #8B5CF6;
--card-hover-bg: rgba(243, 244, 246, 0.8);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
.dataset-table {
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin: 2rem 0;
background: var(--bg-secondary);
border-radius: 1rem;
overflow: hidden;
box-shadow: 0 4px 20px var(--shadow-color);
}
.dataset-table thead {
background: linear-gradient(90deg, var(--accent-blue), var(--accent-purple));
}
.dataset-table th {
padding: 1.25rem 1rem;
text-align: left;
color: white;
font-weight: 600;
font-size: 1rem;
}
.dataset-table td {
padding: 1rem;
border-bottom: 1px solid var(--border-primary);
color: var(--text-secondary);
transition: all 0.2s ease;
}
.dataset-table tbody tr:hover td {
background: var(--card-hover-bg);
color: var(--text-primary);
}
.methodology-content {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-secondary);
line-height: 1.7;
font-size: 1rem;
}
.section-title {
font-size: 2.5rem;
font-weight: 700;
margin: 3rem 0 1.5rem;
color: var(--text-primary);
background: linear-gradient(to right, var(--accent-blue), var(--accent-purple));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
letter-spacing: -0.02em;
}
</style>
<div class="section-divider"></div>
<h1 class="section-title">Citation</h2>
<div class="bibtex-citation" style="font-family: monospace; white-space: pre; padding: 1em; background-color: rgba(128, 128, 128, 0.1); border: 1px solid rgba(128, 128, 128, 0.2); border-radius: 4px; color: currentColor;">
@misc{khouja2025lingolytoodisentanglingmemorisationreasoning,
title={LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation},
author={Jude Khouja and Karolina Korgul and Simi Hellsten
and Lingyi Yang and Vlad Neacsu and Harry Mayne and Ryan Kearns and Andrew Bean and Adam Mahdi},
year={2025},
eprint={2503.02972},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.02972},
}
</div>
"""
UNUSED = """
<!-- Insights Section -->
<h1 class="section-title">Key insights</h1>
<p>
We use orthographic templatisation on Linguistics Olympiad problems to create obfuscated variants
that maintain the same reasoning steps. Through extensive experiments, we show that obfuscation
reduces measurement bias from data exposure and provides reasoning estimates that correlate with
the ability to solve linguistic reasoning problems. Additionally, we find that state-of-the-art
models exhibit inconsistent reasoning abilities and that simple fine-tuning does not necessarily
equip models with context-free and robust problem-solving skills. This work establishes a reasoning
measure that is resilient to data exposure effects and supports ongoing efforts to fully understand
response generation in advanced models.
</p>
"""
|