Upload 3 files
Browse files- app.py +28 -0
- requirements.txt +5 -0
- yolov8_model.pt +3 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
# Load trained model
|
7 |
+
model = YOLO("E:\\job related docs\\thegame\\yolov8\\yolov8_model.pt") # or "yolov8s.onnx"
|
8 |
+
|
9 |
+
def detect_defects(image):
|
10 |
+
# Run inference
|
11 |
+
results = model(image)
|
12 |
+
# Plot results
|
13 |
+
annotated_img = results[0].plot(line_width=2)
|
14 |
+
return annotated_img
|
15 |
+
|
16 |
+
# Gradio UI
|
17 |
+
title = "🔍 Steel Surface Defect Detector (YOLOv8)"
|
18 |
+
description = "Upload a steel surface image to detect defects (crazing, scratches, etc.)."
|
19 |
+
examples = ["defect_example1.jpg", "defect_example2.jpg"]
|
20 |
+
|
21 |
+
gr.Interface(
|
22 |
+
fn=detect_defects,
|
23 |
+
inputs=gr.Image(type="numpy"),
|
24 |
+
outputs=gr.Image(type="numpy"),
|
25 |
+
title=title,
|
26 |
+
description=description,
|
27 |
+
examples=examples,
|
28 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
opencv-python
|
5 |
+
onnxruntime
|
yolov8_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea9b9dd4ef4fd2786bbf13ccbe86d9014e545c788afc3eb5e6bd1f9f66e4e830
|
3 |
+
size 6266171
|