Coqui-Xtts-Demo / gradio_app.py
Jimmy Vu
Update split_sentence
0210dff
raw
history blame
16.9 kB
import os
import sys
import time
import hashlib
import site
import subprocess
import gradio as gr
import torch
import torchaudio
import numpy as np
from underthesea import sent_tokenize
from df.enhance import enhance, init_df, load_audio, save_audio
from huggingface_hub import snapshot_download
from langdetect import detect
from utils.vietnamese_normalization import normalize_vietnamese_text
from utils.logger import setup_logger
from utils.sentence import split_sentence, merge_sentences
import warnings
warnings.filterwarnings("ignore")
logger = setup_logger(__file__)
df_model, df_state = None, None
APP_DIR = os.path.dirname(os.path.abspath(__file__))
checkpoint_dir=f"{APP_DIR}/cache"
temp_dir=f"{APP_DIR}/cache/temp/"
sample_audio_dir=f"{APP_DIR}/cache/audio_samples/"
enhance_audio_dir=f"{APP_DIR}/cache/audio_enhances/"
speakers_dir=f"{APP_DIR}/cache/speakers/"
for d in [checkpoint_dir, temp_dir, sample_audio_dir, enhance_audio_dir]:
os.makedirs(d, exist_ok=True)
language_dict = {'English': 'en', 'Español (Spanish)': 'es', 'Français (French)': 'fr',
'Deutsch (German)': 'de', 'Italiano (Italian)': 'it', 'Português (Portuguese)': 'pt',
'Polski (Polish)': 'pl', 'Türkçe (Turkish)': 'tr', 'Русский (Russian)': 'ru',
'Nederlands (Dutch)': 'nl', 'Čeština (Czech)': 'cs', 'العربية (Arabic)': 'ar', '中文 (Chinese)': 'zh-cn',
'Magyar nyelv (Hungarian)': 'hu', '한국어 (Korean)': 'ko', '日本語 (Japanese)': 'ja',
'Tiếng Việt (Vietnamese)': 'vi', 'Auto': 'auto'}
default_language = 'Auto'
language_codes = [v for _, v in language_dict.items()]
def lang_detect(text):
try:
lang = detect(text)
if lang == 'zh-tw':
return 'zh-cn'
return lang if lang in language_codes else 'en'
except:
return 'en'
input_text_max_length = 3000
use_deepspeed = False
try:
import spaces
except ImportError:
from utils import spaces
xtts_model = None
def load_model():
global xtts_model
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
repo_id = "jimmyvu/xtts"
snapshot_download(repo_id=repo_id,
local_dir=checkpoint_dir,
allow_patterns=["*.safetensors", "*.wav", "*.json"],
ignore_patterns="*.pth")
config = XttsConfig()
config.load_json(os.path.join(checkpoint_dir, "config.json"))
xtts_model = Xtts.init_from_config(config)
logger.info("Loading model...")
xtts_model.load_safetensors_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
xtts_model.cuda()
logger.info(f"Successfully loaded model from {checkpoint_dir}")
load_model()
def download_unidic():
site_package_path = site.getsitepackages()[0]
unidic_path = os.path.join(site_package_path, "unidic", "dicdir")
if not os.path.exists(unidic_path):
logger.info("Downloading unidic...")
subprocess.call([sys.executable, "-m", "unidic", "download"])
download_unidic()
default_speaker_reference_audio = os.path.join(sample_audio_dir, 'harvard.wav')
default_speaker_id = "Aaron Dreschner"
def validate_input(input_text, language):
log_messages = ""
if len(input_text) > input_text_max_length:
gr.Warning("Text is too long! Please provide a shorter text.")
log_messages += "Text is too long! Please provide a shorter text.\n"
return log_messages
language_code = language_dict.get(language, 'en')
logger.info(f"Language [{language}], code: [{language_code}]")
lang = lang_detect(input_text) if language == 'Auto' else language_code
if (lang not in ['ja', 'kr', 'zh-cn'] and len(input_text.split()) < 2) or \
(lang in ['ja', 'kr', 'zh-cn'] and len(input_text) < 2):
gr.Warning("Text is too short! Please provide a longer text.")
log_messages += "Text is too short! Please provide a longer text.\n"
return log_messages
@spaces.GPU
def synthesize_speech(input_text, speaker_id, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0, language='Auto'):
"""Process text and generate audio."""
global xtts_model
log_messages = validate_input(input_text, language)
if log_messages:
return None, log_messages
start = time.time()
logger.info(f"Start processing text: {input_text[:30]}... [length: {len(input_text)}]")
# inference
wav_array, num_of_tokens = inference(input_text=input_text,
language=language,
speaker_id=speaker_id,
gpt_cond_latent=None,
speaker_embedding=None,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=float(repetition_penalty))
end = time.time()
processing_time = end - start
tokens_per_second = num_of_tokens/processing_time
logger.info(f"End processing text: {input_text[:30]}")
message = f"💡 {tokens_per_second:.1f} tok/s • {num_of_tokens} tokens • in {processing_time:.2f} seconds"
logger.info(message)
log_messages += message
return (24000, wav_array), log_messages
@spaces.GPU
def generate_speech(input_text, speaker_reference_audio, enhance_speech, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0, language='Auto'):
"""Process text and generate audio."""
global df_model, df_state, xtts_model
log_messages = validate_input(input_text, language)
if log_messages:
return None, log_messages
if not speaker_reference_audio:
gr.Warning("Please provide at least one reference audio!")
log_messages += "Please provide at least one reference audio!\n"
return None, log_messages
start = time.time()
logger.info(f"Start processing text: {input_text[:30]}... [length: {len(input_text)}]")
if enhance_speech:
logger.info("Enhancing reference audio...")
_, audio_file = os.path.split(speaker_reference_audio)
enhanced_audio_path = os.path.join(enhance_audio_dir, f"{audio_file}.enh.wav")
if not os.path.exists(enhanced_audio_path):
if not df_model:
df_model, df_state, _ = init_df()
audio, _ = load_audio(speaker_reference_audio, sr=df_state.sr())
# denoise audio
enhanced_audio = enhance(df_model, df_state, audio)
# save enhanced audio
save_audio(enhanced_audio_path, enhanced_audio, sr=df_state.sr())
speaker_reference_audio = enhanced_audio_path
gpt_cond_latent, speaker_embedding = xtts_model.get_conditioning_latents(
audio_path=speaker_reference_audio,
gpt_cond_len=xtts_model.config.gpt_cond_len,
max_ref_length=xtts_model.config.max_ref_len,
sound_norm_refs=xtts_model.config.sound_norm_refs,
)
# inference
wav_array, num_of_tokens = inference(input_text=input_text,
language=language,
speaker_id=None,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=float(repetition_penalty))
end = time.time()
processing_time = end - start
tokens_per_second = num_of_tokens/processing_time
logger.info(f"End processing text: {input_text[:30]}")
message = f"💡 {tokens_per_second:.1f} tok/s • {num_of_tokens} tokens • in {processing_time:.2f} seconds"
logger.info(message)
log_messages += message
return (24000, wav_array), log_messages
def inference(input_text, language, speaker_id=None, gpt_cond_latent=None, speaker_embedding=None, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0):
language_code = lang_detect(input_text) if language == 'Auto' else language_dict.get(language, 'en')
# Split text by sentence
if language_code in ["ja", "zh-cn"]:
sentences = input_text.split("。")
else:
sentences = sent_tokenize(input_text)
# merge short sentences to next/prev ones
sentences = merge_sentences(sentences)
# set dynamic length penalty from -1.0 to 1,0 based on text length
max_text_length = 180
dynamic_length_penalty = lambda text_length: (2 * (min(max_text_length, text_length) / max_text_length)) - 1
if speaker_id is not None:
gpt_cond_latent, speaker_embedding = xtts_model.speaker_manager.speakers[speaker_id].values()
# inference
out_wavs = []
num_of_tokens = 0
for sentence in sentences:
if len(sentence.strip()) == 0:
continue
lang = lang_detect(sentence) if language == 'Auto' else language_code
if lang == 'vi':
sentence = normalize_vietnamese_text(sentence)
text_tokens = torch.IntTensor(xtts_model.tokenizer.encode(sentence, lang=lang)).unsqueeze(0).to(xtts_model.device)
num_of_tokens += text_tokens.shape[-1]
txts = split_sentence(sentence, max_text_length=max_text_length)
for txt in txts:
logger.info(f"[{lang}] {txt}")
try:
out = xtts_model.inference(
text=txt,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
length_penalty=dynamic_length_penalty(len(sentence)),
enable_text_splitting=False,
)
out_wavs.append(out["wav"])
except Exception as e:
logger.error(f"Error processing text: {e}")
return np.concatenate(out_wavs), num_of_tokens
def build_gradio_ui():
"""Builds and launches the Gradio UI."""
default_prompt = ("Hi, I am a multilingual text-to-speech AI model.\n"
"Bonjour, je suis un modèle d'IA de synthèse vocale multilingue.\n"
"Hallo, ich bin ein mehrsprachiges Text-zu-Sprache KI-Modell.\n"
"Ciao, sono un modello di intelligenza artificiale di sintesi vocale multilingue.\n"
"Привет, я многоязычная модель искусственного интеллекта, преобразующая текст в речь.\n"
"Xin chào, tôi là một mô hình AI chuyển đổi văn bản thành giọng nói đa ngôn ngữ.\n")
with gr.Blocks(title="Coqui XTTS Demo", theme='jimmyvu/small_and_pretty') as ui:
gr.Markdown(
"""
# 🐸 Coqui-XTTS Text-to-Speech Demo
Convert text to speech with advanced voice cloning and enhancement.
Support 17 languages, \u2605 **Vietnamese** \u2605 newly added.
"""
)
with gr.Tab("Built-in Voice"):
with gr.Row():
with gr.Column():
input_text = gr.Text(label="Enter Text Here",
placeholder="Write the text you want to synthesize...",
value=default_prompt,
lines=5,
max_length=input_text_max_length)
speaker_id = gr.Dropdown(label="Speaker", choices=[k for k in xtts_model.speaker_manager.speakers.keys()], value=default_speaker_id)
language = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
synthesize_button = gr.Button("Generate Speech")
with gr.Column():
audio_output = gr.Audio(label="Generated Audio")
log_output = gr.Text(label="Log Output")
with gr.Tab("Reference Voice"):
with gr.Row():
with gr.Column():
input_text_generate = gr.Text(label="Enter Text Here",
placeholder="Write the text you want to synthesize...",
lines=5,
max_length=input_text_max_length)
speaker_reference_audio = gr.Audio(
label="Speaker reference audio:",
type="filepath",
editable=False,
min_length=3,
max_length=300,
value=default_speaker_reference_audio
)
enhance_speech = gr.Checkbox(label="Enhance Reference Audio", value=False)
language_generate = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
generate_button = gr.Button("Generate Speech")
with gr.Column():
audio_output_generate = gr.Audio(label="Generated Audio")
log_output_generate = gr.Text(label="Log Output")
with gr.Tab("Clone Your Voice"):
with gr.Row():
with gr.Column():
input_text_mic = gr.Text(label="Enter Text Here",
placeholder="Write the text you want to synthesize...",
lines=5,
max_length=input_text_max_length)
mic_ref_audio = gr.Audio(label="Record Reference Audio", sources=["microphone"])
enhance_speech_mic = gr.Checkbox(label="Enhance Reference Audio", value=True)
language_mic = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
generate_button_mic = gr.Button("Generate Speech")
with gr.Column():
audio_output_mic = gr.Audio(label="Generated Audio")
log_output_mic = gr.Text(label="Log Output")
def process_mic_and_generate(input_text_mic, mic_ref_audio, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic):
if mic_ref_audio:
data = str(time.time()).encode("utf-8")
hash = hashlib.sha1(data).hexdigest()[:10]
output_path = os.path.join(temp_dir, (f"mic_{hash}.wav"))
torch_audio = torch.from_numpy(mic_ref_audio[1].astype(float))
try:
torchaudio.save(output_path, torch_audio.unsqueeze(0), mic_ref_audio[0])
return generate_speech(input_text_mic, output_path, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic)
except Exception as e:
logger.error(f"Error saving audio file: {e}")
return None, f"Error saving audio file: {e}"
else:
return None, "Please record an audio!"
with gr.Tab("Advanced Settings"):
with gr.Row():
with gr.Column():
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.3, step=0.05)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=50.0, value=9.5, step=1.0)
with gr.Column():
top_p = gr.Slider(label="Top P", minimum=0.5, maximum=1.0, value=0.85, step=0.05)
top_k = gr.Slider(label="Top K", minimum=0, maximum=100, value=50, step=5)
synthesize_button.click(
synthesize_speech,
inputs=[input_text, speaker_id, temperature, top_p, top_k, repetition_penalty, language],
outputs=[audio_output, log_output],
)
generate_button.click(
generate_speech,
inputs=[input_text_generate, speaker_reference_audio, enhance_speech, temperature, top_p, top_k, repetition_penalty, language_generate],
outputs=[audio_output_generate, log_output_generate],
)
generate_button_mic.click(
process_mic_and_generate,
inputs=[input_text_mic, mic_ref_audio, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic],
outputs=[audio_output_mic, log_output_mic],
)
return ui
if __name__ == "__main__":
ui = build_gradio_ui()
ui.launch(debug=False)