File size: 8,353 Bytes
6505e49
6b6d5cd
 
6505e49
 
 
 
 
 
 
 
 
 
6b6d5cd
6505e49
6b6d5cd
 
 
6505e49
 
 
 
 
 
6b6d5cd
6505e49
 
6b6d5cd
6505e49
 
 
 
 
 
 
 
 
6b6d5cd
 
6505e49
 
 
 
 
 
 
 
 
 
6b6d5cd
6505e49
6b6d5cd
6505e49
 
6b6d5cd
 
6505e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6d5cd
6505e49
6b6d5cd
 
 
6505e49
 
6b6d5cd
6505e49
6b6d5cd
6505e49
6b6d5cd
 
 
 
 
 
6505e49
 
6b6d5cd
 
 
 
 
 
 
 
6505e49
6b6d5cd
 
 
 
 
6505e49
 
 
 
 
 
 
 
 
 
6b6d5cd
6505e49
 
 
 
 
 
6b6d5cd
6505e49
6b6d5cd
6505e49
6b6d5cd
 
 
 
 
6505e49
6b6d5cd
 
 
 
 
 
 
 
 
 
6505e49
 
 
 
 
 
 
 
6b6d5cd
 
6505e49
6b6d5cd
6505e49
 
 
 
 
6b6d5cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
import os

import gradio as gr
import requests
from lagent.schema import AgentStatusCode
import os

os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &")

PLANNER_HISTORY = []
SEARCHER_HISTORY = []


def rst_mem(history_planner: list, history_searcher: list):
    '''

    Reset the chatbot memory.

    '''
    history_planner = []
    history_searcher = []
    if PLANNER_HISTORY:
        PLANNER_HISTORY.clear()
    return history_planner, history_searcher


def format_response(gr_history, agent_return):
    if agent_return['state'] in [
            AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
    ]:
        gr_history[-1][1] = agent_return['response']
    elif agent_return['state'] == AgentStatusCode.PLUGIN_START:
        thought = gr_history[-1][1].split('```')[0]
        if agent_return['response'].startswith('```'):
            gr_history[-1][1] = thought + '\n' + agent_return['response']
    elif agent_return['state'] == AgentStatusCode.PLUGIN_END:
        thought = gr_history[-1][1].split('```')[0]
        if isinstance(agent_return['response'], dict):
            gr_history[-1][
                1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```'  # noqa: E501
    elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:
        assert agent_return['inner_steps'][-1]['role'] == 'environment'
        item = agent_return['inner_steps'][-1]
        gr_history.append([
            None,
            f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"
        ])
        gr_history.append([None, ''])
    return


def predict(history_planner, history_searcher):

    def streaming(raw_response):
        for chunk in raw_response.iter_lines(chunk_size=8192,
                                             decode_unicode=False,
                                             delimiter=b'\n'):
            if chunk:
                decoded = chunk.decode('utf-8')
                if decoded == '\r':
                    continue
                if decoded[:6] == 'data: ':
                    decoded = decoded[6:]
                elif decoded.startswith(': ping - '):
                    continue
                response = json.loads(decoded)
                yield (response['response'], response['current_node'])

    global PLANNER_HISTORY
    PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
    new_search_turn = True

    url = 'http://localhost:8002/solve'
    headers = {'Content-Type': 'application/json'}
    data = {'inputs': PLANNER_HISTORY}
    raw_response = requests.post(url,
                                 headers=headers,
                                 data=json.dumps(data),
                                 timeout=20,
                                 stream=True)

    for resp in streaming(raw_response):
        agent_return, node_name = resp
        if node_name:
            if node_name in ['root', 'response']:
                continue
            agent_return = agent_return['nodes'][node_name]['detail']
            if new_search_turn:
                history_searcher.append([agent_return['content'], ''])
                new_search_turn = False
            format_response(history_searcher, agent_return)
            if agent_return['state'] == AgentStatusCode.END:
                new_search_turn = True
            yield history_planner, history_searcher
        else:
            new_search_turn = True
            format_response(history_planner, agent_return)
            if agent_return['state'] == AgentStatusCode.END:
                PLANNER_HISTORY = agent_return['inner_steps']
            yield history_planner, history_searcher
    return history_planner, history_searcher


examples = [
    ['Find legal precedents in contract law.'],
    ['What are the top 10 e-commerce websites?'],
    ['Generate a report on global climate change.'],
]

css_path = os.path.join(os.path.dirname(__file__), 'css', 'gradio_front.css')
with gr.Blocks(css=css_path) as demo:
    with gr.Column(elem_classes='chat-box'):
        gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
        gr.HTML(
            """<p style="text-align: center; font-family: Arial, sans-serif;">

                MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance.

                You can deploy your own Perplexity.ai-style search engine using either

                closed-source LLMs (GPT, Claude)

                or open-source LLMs (InternLM2.5-7b-chat).</p> """)
        gr.HTML("""

        <div style="text-align: center; font-size: 16px;">

        <a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px;

         text-decoration: none; color: #4A90E2;" target="_blank">🔗 GitHub</a>

        <a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px;

         text-decoration: none; color: #4A90E2;" target="_blank">📄 Arxiv</a>

        <a href="https://huggingface.co/papers/2407.20183" style="margin-right:

         15px; text-decoration: none; color: #4A90E2;" target="_blank">📚 Hugging Face Papers</a>

        <a href="https://huggingface.co/spaces/internlm/MindSearch"

         style="text-decoration: none; color: #4A90E2;" target="_blank">🤗 Hugging Face Demo</a>

        </div>""")
    gr.HTML("""

       <h1 align='right'><img

        src=

        'https://raw.githubusercontent.com/InternLM/MindSearch/98fd84d566fe9e3adc5028727f72f2944098fd05/assets/logo.svg'

         alt='MindSearch Logo1' class="logo"></h1> """)

    with gr.Row():
        with gr.Column(scale=10):
            with gr.Row():
                with gr.Column():
                    planner = gr.Chatbot(label='planner',
                                         show_label=True,
                                         show_copy_button=True,
                                         bubble_full_width=False,
                                         render_markdown=True,
                                         elem_classes='chatbot-container')
                with gr.Column():
                    searcher = gr.Chatbot(label='searcher',
                                          show_label=True,
                                          show_copy_button=True,
                                          bubble_full_width=False,
                                          render_markdown=True,
                                          elem_classes='chatbot-container')

            with gr.Row(elem_classes='chat-box'):
                # Text input area
                user_input = gr.Textbox(show_label=False,
                                        placeholder='Type your message...',
                                        lines=1,
                                        container=False,
                                        elem_classes='editor')
                # Buttons (now in the same Row)
                submitBtn = gr.Button('submit',
                                      variant='primary',
                                      elem_classes='toolbarButton')
                clearBtn = gr.Button('clear',
                                     variant='secondary',
                                     elem_classes='toolbarButton')
            with gr.Row(elem_classes='examples-container'):
                examples_component = gr.Examples(examples,
                                                 inputs=user_input,
                                                 label='Try these examples:')

    def user(query, history):
        return '', history + [[query, '']]

    def submit_example(example):
        return user(example[0], planner.value)

    submitBtn.click(user, [user_input, planner], [user_input, planner],
                    queue=False).then(predict, [planner, searcher],
                                      [planner, searcher])
    clearBtn.click(rst_mem, [planner, searcher], [planner, searcher],
                   queue=False)

demo.queue()
demo.launch(server_name='0.0.0.0',
            server_port=7860,
            inbrowser=True,
            share=True)