succ1 / DLKcat /DeeplearningApproach /Code /analysis /Fig3c_Mutacorrelation.py
jie1's picture
Upload 28 files
2d12bc4
#!/usr/bin/python
# coding: utf-8
# Author: LE YUAN
import os
import math
import model
import torch
import json
import pickle
import numpy as np
from rdkit import Chem
from Bio import SeqIO
from collections import Counter
from collections import defaultdict
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
from matplotlib import rc
from scipy import stats
import seaborn as sns
import pandas as pd
from scipy.stats import ranksums
from sklearn.metrics import mean_squared_error,r2_score
fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
edge_dict = model.load_pickle('../../Data/input/edge_dict.pickle')
word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')
def split_sequence(sequence, ngram):
sequence = '-' + sequence + '='
# print(sequence)
# words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]
words = list()
for i in range(len(sequence)-ngram+1) :
try :
words.append(word_dict[sequence[i:i+ngram]])
except :
word_dict[sequence[i:i+ngram]] = 0
words.append(word_dict[sequence[i:i+ngram]])
return np.array(words)
# return word_dict
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# atom_dict = defaultdict(lambda: len(atom_dict))
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
# print(atoms)
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
atoms = [atom_dict[a] for a in atoms]
# atoms = list()
# for a in atoms :
# try:
# atoms.append(atom_dict[a])
# except :
# atom_dict[a] = 0
# atoms.append(atom_dict[a])
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
# bond_dict = defaultdict(lambda: len(bond_dict))
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
# fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
# edge_dict = defaultdict(lambda: len(edge_dict))
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
# fingerprints.append(fingerprint_dict[fingerprint])
# fingerprints.append(fingerprint_dict.get(fingerprint))
try :
fingerprints.append(fingerprint_dict[fingerprint])
except :
fingerprint_dict[fingerprint] = 0
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
# edge = edge_dict[(both_side, edge)]
# edge = edge_dict.get((both_side, edge))
try :
edge = edge_dict[(both_side, edge)]
except :
edge_dict[(both_side, edge)] = 0
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)
def create_adjacency(mol):
adjacency = Chem.GetAdjacencyMatrix(mol)
return np.array(adjacency)
def dump_dictionary(dictionary, filename):
with open(filename, 'wb') as file:
pickle.dump(dict(dictionary), file)
def load_tensor(file_name, dtype):
return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]
class Predictor(object):
def __init__(self, model):
self.model = model
def predict(self, data):
predicted_value = self.model.forward(data)
return predicted_value
def extract_wildtype_mutant() :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
entry_keys = list()
for data in Kcat_data :
# print(data['ECNumber'])
# print(data['Substrate'])
# print(data['Organism'])
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
entry_key = substrate + '&' + organism + '&' + EC
# print(entry_key.lower())
entry_keys.append(entry_key)
entry_dict = dict(Counter(entry_keys))
# print(entry_dict)
duplicated_keys = [key for key, value in entry_dict.items() if value > 1]
# print(duplicated_keys)
duplicated_dict = {key:value for key, value in entry_dict.items() if value > 1}
# print(duplicated_dict)
# https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value
# print(sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30])
duplicated_list = sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30]
for duplicated in duplicated_list[:1] :
# print('The subtrate name:', duplicated[0])
for data in Kcat_data :
# duplicated_one_entry = duplicated_list[0].split('&')
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
one_entry = substrate + '&' + organism + '&' + EC
if one_entry == duplicated[0] :
enzyme_type = data['Type']
Kcat_value = data['Value']
# print('Substrate:', substrate)
# print('%s enzyme: %s' %(enzyme_type, Kcat_value))
# print('----'*15+'\n')
return duplicated_list
def extract_wildtype_kcat(entry) :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
for data in Kcat_data :
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
one_entry = substrate + '&' + organism + '&' + EC
if one_entry == entry :
enzyme_type = data['Type']
if enzyme_type == 'wildtype' :
wildtype_kcat = float(data['Value'])
if wildtype_kcat :
return wildtype_kcat
else :
return None
def compare_prediction_wildtype_mutant() :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
wildtype_mutant_entries = extract_wildtype_mutant()
# with open('../species/Saccharomyces_cerevisiaeForKcatPrediction2.txt', 'r') as infile :
# lines = infile.readlines()[1:]
# print(len(lines)) # 6291
# # print(lines[1])
# # proteinSeq = get_refSeq()
fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict)
# print(n_fingerprint) # 3958
# print(n_word) # 8542
radius=2
ngram=3
dim=10
layer_gnn=3
side=5
window=11
layer_cnn=3
layer_output=3
lr=1e-3
lr_decay=0.5
decay_interval=10
weight_decay=1e-6
iteration=100
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# torch.manual_seed(1234)
Kcat_model = model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
# print(state_dict.keys())
# model.eval()
predictor = Predictor(Kcat_model)
print('It\'s time to start the prediction!')
print('-----------------------------------')
# prediction = predictor.predict(inputs)
i = 0
alldata = dict()
alldata['substrate'] = list()
alldata['experimental'] = list()
alldata['predicted'] = list()
experimental_values = list()
predicted_values = list()
substrate_enzymes = {
'7,8-Dihydrofolate': 'DHFR',
'Glycerate 3-phosphate': 'PGDH',
'L-Aspartate': 'AKIII',
'Penicillin G': 'DAOCS',
'Inosine': 'PNP',
'Isopentenyl diphosphate': 'GGPPs'
}
for wildtype_mutant_entry in wildtype_mutant_entries :
entry_names = wildtype_mutant_entry[0].split('&')
# print('This entry is:', entry_names)
# print('The total amount of wildtype and variant enzymes in the entry is:', wildtype_mutant_entry[1])
# experimental_values = list()
# predicted_values = list()
# wildtype_like = list()
# wildtype_decreased = list()
if entry_names[0] in ['7,8-Dihydrofolate', 'Glycerate 3-phosphate', 'L-Aspartate', 'Penicillin G', 'Inosine', 'Isopentenyl diphosphate'] :
print('This entry is:', entry_names)
for data in Kcat_data :
# print(data)
# print(data['Substrate'])
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
entry = substrate + '&' + organism + '&' + EC
if entry == wildtype_mutant_entry[0] :
substrate_name = entry_names[0]
# alldata['substrate'].append(entry_names[0])
alldata['substrate'].append(substrate_enzymes[substrate_name] + ' & ' + substrate_name)
wildtype_kcat = extract_wildtype_kcat(entry)
# print('wildtype kcat:', wildtype_kcat)
# print(data)
# if wildtype_kcat :
i += 1
# print('This is', i, '---------------------------------------')
smiles = data['Smiles']
sequence = data['Sequence']
enzyme_type = data['Type']
Kcat = data['Value']
if "." not in smiles and float(Kcat) > 0:
# i += 1
# print('This is',i)
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
# print(atoms)
i_jbond_dict = create_ijbonddict(mol)
# print(i_jbond_dict)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
# print(fingerprints)
# compounds.append(fingerprints)
adjacency = create_adjacency(mol)
# print(adjacency)
# adjacencies.append(adjacency)
words = split_sequence(sequence,ngram)
# print(words)
# proteins.append(words)
fingerprints = torch.LongTensor(fingerprints)
adjacency = torch.FloatTensor(adjacency)
words = torch.LongTensor(words)
inputs = [fingerprints, adjacency, words]
value = float(data['Value'])
# print('Current kcat value:', value)
normalized_value = value/wildtype_kcat
# print('%.2f' % normalized_value)
# print(type(value))
# print(type(normalized_value))
experimental_values.append(math.log10(value))
alldata['experimental'].append(math.log10(value))
prediction = predictor.predict(inputs)
Kcat_log_value = prediction.item()
Kcat_value = math.pow(2,Kcat_log_value)
# print(Kcat_value)
# print('%.2f' % normalized_value)
# print(type(Kcat_value))
predicted_values.append(math.log10(Kcat_value))
alldata['predicted'].append(math.log10(Kcat_value))
# correlation1, p_value1 = stats.pearsonr(experimental_values, predicted_values)
# # https://blog.csdn.net/u012735708/article/details/84337262?utm_medium=distribute.pc_relevant.none-
# # task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache&depth_1-utm_source=
# # distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache
# r2 = r2_score(experimental_values,predicted_values)
# rmse = np.sqrt(mean_squared_error(experimental_values,predicted_values))
# print('r is %.4f' % correlation1)
# print('P value is', p_value1)
# # print('R2 is %.4f' % r2)
# # print('RMSE is %.4f' % rmse)
# # print('-----'*10 + '\n')
correlation, p_value = stats.pearsonr(experimental_values, predicted_values)
r2 = r2_score(experimental_values,predicted_values)
rmse = np.sqrt(mean_squared_error(experimental_values,predicted_values))
print('The overall r is %.4f' % correlation)
print('The overall P value is', p_value)
print('The overall R2 is %.4f' % r2)
print('The overall RMSE is %.4f' % rmse)
# The overall r is 0.9418
# The overall P value is 7.040747950580316e-92
# The overall R2 is 0.8830
# The overall RMSE is 0.4214
# https://blog.csdn.net/weixin_38753213/article/details/109831543
allData = pd.DataFrame(alldata)
# fig, ax = plt.subplots(figsize=(4.0,2.8))
# fig, ax = plt.subplots(figsize=(1.5,1.5))
# ax = plt.figure(figsize=(1.5,1.5))
plt.figure(figsize=(1.5,1.5))
# To solve the 'Helvetica' font cannot be used in PDF file
# https://stackoverflow.com/questions/59845568/the-pdf-backend-does-not-currently-support-the-selected-font
# rc('text', usetex=True)
rc('font',**{'family':'serif','serif':['Helvetica']})
plt.rcParams['pdf.fonttype'] = 42
# plt.rc('text', usetex=True)
plt.axes([0.12,0.12,0.83,0.83])
plt.tick_params(direction='in')
plt.tick_params(which='major',length=1.5)
plt.tick_params(which='major',width=0.4)
palette = ("#FF8C00", "#A034F0", "#159090", "#1051D6", '#0AB944', '#DF16B7')
# scatter = sns.scatterplot(data=allData, x='experimental', y='predicted', hue='substrate',
# palette=palette, legend='full', ec='white', sizes=(1.5, 1.5, 1.5, 1.5, 1.5, 1.5), alpha=.7, ax=ax)
# scatter = sns.scatterplot(data=allData, x='experimental', y='predicted', hue='substrate',
# palette=palette, ec='white', sizes=(1.5, 1.5, 1.5, 1.5, 1.5, 1.5), alpha=.7, ax=ax)
scatter = sns.scatterplot(data=allData, x='experimental', y='predicted', hue='substrate',
palette=palette, ec='white', s=8, alpha=.7)
scatter.get_legend().remove()
plt.rcParams['font.family'] = 'Helvetica'
scatter.set_xlabel("Experimental $k$$_\mathregular{cat}$ value", fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7}, fontsize=7)
scatter.set_ylabel('Predicted $k$$_\mathregular{cat}$ value',fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7},fontsize=7)
plt.xticks([-5, -3, -1, 1, 3])
plt.yticks([-5, -3, -1, 1, 3])
plt.xticks(fontsize=6)
plt.yticks(fontsize=6)
plt.plot([-5, -3, -1, 1, 3],[-5, -3, -1, 1, 3],color='b',linestyle='dashed',linewidth=1) # linewidth=0.75
ax = plt.gca()
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left'].set_linewidth(0.5)
ax.spines['top'].set_linewidth(0.5)
ax.spines['right'].set_linewidth(0.5)
# scatter.legend(loc='best')
plt.legend(bbox_to_anchor=(1.01,1), frameon=False, fontsize=6)
plt.tight_layout()
plt.savefig("../../Results/figures/Fig3c.pdf", dpi=400, bbox_inches = 'tight')
if __name__ == '__main__' :
compare_prediction_wildtype_mutant()