File size: 11,611 Bytes
70b95b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
#!/usr/bin/python
################################################################################
# findMaxKcats
# Reads all EC files and finds the max value for each substrate for the chosen
# microorganism on the different enzymatic parameters [Kcat, KM, SA, MW].
# For each parameter Writes a table with the following columns:
# * EC number
# * substrate
# * organism name//taxonomical classification (according to KEGG)
# * Max value
# * metabolic pathways
# Benjamin Sanchez. Last edited: 2015-08-26
# Ivan Domenzain. Last edited: 2018-04-10
################################################################################
# Updated by:
# Author: LE YUAN
# This code should be run under the Python 2.7 environment
#INPUTS:
#1) Enzymatic parameters
features_list = ['KCAT','SA', 'MW']
#2) Path in which the EC files are stored (from script createECfiles.py):
input_path = '/Users/.../brenda_parser/EC_files'
#3) Path in which you wish to store the final table:
output_path = '/Users/.../brenda_parser/max_data'
################################################################################
#sub_max_std: Recieves a list of substrates///organism_info///values, returns
#3 lists: substrates - max - std
def sub_max_std(data):
#Sorts list, add a last empty line and initialize variables:
data.sort()
data.append('')
#for every substrate gets the index of all its appearences in the rows
#of the EC data
substrates, org_strings_reps, values_reps, reps_indexes = substrate_repetitions(data)
org_strings, values =\
find_in_substrate(substrates, org_strings_reps, values_reps, reps_indexes)
#get maximum kvalues
values = maximum_values(values)
return (substrates,org_strings,values)
################################################################################
#maximum_values: Gets the maximum Kvalue for each organism related
#to each substrate
def maximum_values(values):
for subs_values in values:
i = values.index(subs_values)
for org_values in subs_values:
j = subs_values.index(org_values)
#org_values = max(org_values)
values[i][j] = max(values[i][j])
return(values)
################################################################################
#find_in_substrate: Finds the organisms and K values related to each substrate
def find_in_substrate(substrates, org_strings_reps, values_reps, reps_indexes):
org_strings = []
values = []
for i in range(len(substrates)):
subs_orgs = []
subs_values = []
for j in reps_indexes[i]:
try:
org_index = subs_orgs.index(org_strings_reps[j])
subs_values[org_index].append(values_reps[j])
except:
subs_orgs.append(org_strings_reps[j])
org_index = subs_orgs.index(org_strings_reps[j])
subs_values.append([values_reps[j]])
org_strings.append(subs_orgs)
values.append(subs_values)
return(org_strings, values)
################################################################################
#substrate_repetitions: Finds from each EC file the organism and K values related
#to each substrate
def substrate_repetitions(data):
substrates = []
org_strings_reps = []
values_reps = []
reps_indexes = []
for row in data:
if row != '':
row_index = data.index(row)
#gets index if row substrate is repeated
try:
subs_indx = substrates.index(row[0:row.find('///')])
#if new substrate
except:
substrates.append(row[0:row.find('///')])
subs_indx = substrates.index(row[0:row.find('///')])
reps_indexes.append([])
#list with the indexes of the rows with repeated substrates
reps_indexes[subs_indx].append(row_index)
#organisms for related to each substrate
org_strings_reps.append(row[row.find('///')+3:row.find('////')])
#values found for each organism
values_reps.append(float(row[row.find('////')+4:len(row)]))
return(substrates, org_strings_reps, values_reps, reps_indexes)
################################################################################
#create_orgs_list: Finds all the organism names for which data is available in
#BRENDA database. As an output a list with all found names is created.
def brenda_orgs_list(dir):
brenda_orgs=[]
for ec in dir:
fid = open(ec,'r')
csv_fid = csv.reader(fid,delimiter='\t')
try:
for row in csv_fid:
if row != '' and row[0] != 'SEQ' and row[0] != '*':
#Uncomment and indent properly if you want to exclude any name longer
#two words (mutants for example, but not exclusively)
#second_blank = row[1].find(' ',row[1].find(' ')+1)
#if second_blank == -1:
org_name = row[1].lower()
#else:
# org_name=row[1][0:second_blank]
if brenda_orgs.count(org_name)==0:
brenda_orgs.append(org_name)
except:
pass#brenda_orgs.append(org_name)
return (brenda_orgs)
################################################################################
#KEGG_orgs_list: Creates a list with all the organisms available at KEGG, as an
#output a table with the fields: name, KEGG code and Taxonomy is created.
def KEGG_orgs_list():
#URL that returns available data of the gene entry on KEGG
url = 'http://rest.kegg.jp/list/organism'
#Try/except for avoiding timeout exceedings
try:
query = urllib2.urlopen(url, timeout=20).read()
except:
query=''
entries = query.split('\n')
KEGG_list = []
tax_kegg = []
codes = []
for row in entries:
if row != '':
row_list = row.split('\t')
if len(row_list)>1:
row_list=[row_list[2],row_list[3],row_list[1]]
if row_list[0].find('(') != -1:
row_list[0]=row_list[0][0:row_list[0].find('(')-1]
#Saves only organisms with specific taxonomic classifications
taxonomy=row_list[1].lower()
if taxonomy.find('eukaryotes')!= -1 or taxonomy.find('prokaryotes')!= -1:
KEGG_list.append(row_list[0].lower())
tax_kegg.append(taxonomy)
codes.append(row_list[2])
return(KEGG_list, tax_kegg, codes)
################################################################################
#orgs_list: Two possible options 1) Merges BRENDA and KEGG organisms lists
# creates a list with only coincidences between lists.
def orgs_list(dir):
KEGG_orgs, info_KEGG, codes = KEGG_orgs_list()
brenda_orgs = brenda_orgs_list(dir)
#print brenda_orgs
organism_list = []
taxonomy = []
org_codes = []
#i=0
counter=0
for B_org in brenda_orgs:
flag = False
if B_org != '*':
i=0
while (i < len(KEGG_orgs) and flag == False):
K_org = KEGG_orgs[i]
if K_org.find(B_org)!= -1:
flag = True
counter = counter+1
organism_list.append(B_org)
taxonomy.append(info_KEGG[i])
org_codes.append(codes[i])
i = i +1
if flag == False:
organism_list.append(B_org)
taxonomy.append('*')
org_codes.append('*')
#for B_org in brenda_orgs:
# if KEGG_orgs.count(B_org) != 0:
# counter=counter+1
# i=KEGG_orgs.index(B_org)
# organism_list.append(B_org)
# taxonomy.append(info_KEGG[i])
# org_codes.append(codes[i])
# else:
# organism_list.append(B_org)
# taxonomy.append('*')
# org_codes.append('*')
return(organism_list,taxonomy,org_codes)
################################################################################
#EC_string: Receives the information in the EC file and builds a string with
#substrates, related organisms and Kvalues
def EC_string(csv_fid, feature_name):
data_string = []
ec_pathways = ''
for row in csv_fid:
if row[0] != '':
row[4] = row[4].lower()
mutant = max(row[4].find('mutant'),row[4].find('mutated'))
#Ignore invalid values:
if row[2] != '-999' and mutant == -1:
#Only allow Kcats <= 1e7 [Bar-Even et al. 2011]
if row[0] == feature_name and float(row[2]) <= 1e7:
#Looks for the organism in the organism merged list
#in order to include taxonomical info if available
try:
org_index = organism_list.index(row[1].lower())
org_string = organism_list[org_index]+'//'+\
taxonomy[org_index]+ '//'+ organism_code[org_index]
data_string.append(row[3].lower() + '///' +\
org_string + '////' + row[2])
except:
print 'Organism not found in KEGG or BRENDA'
#Gets the associated not engineered pathways to the
#EC number if present
if row[0] == 'PATH' and row[2].lower() != 'metabolic pathways':
if row[2].find('(engineered)') == -1:
ec_pathways = ec_pathways + row[2].lower() + '///'
#If path not found an asterisk is added to the field
if ec_pathways == '' or ec_pathways == ' ' or ec_pathways == '\0':
ec_pathways = '*'
if len(ec_pathways) > 3 and ec_pathways[-3] == '/':
ec_pathways = ec_pathways[:-3]
return(data_string, ec_pathways)
################################################################################
#Main Script
#Read all EC file names:
import os
prev_path = os.getcwd()
os.chdir(input_path)
dir_files = os.listdir(input_path)
dir_files.sort()
import urllib2
import csv
organism_list,taxonomy,organism_code = orgs_list(dir_files)
for feature_name in features_list:
#Main loop:
output = ''
for ec in dir_files:
ec_number = ec[0:len(ec)-4]
fid = open(ec,'r')
csv_fid = csv.reader(fid,delimiter='\t')
#Builds a string with all the information in the EC file
data_string, ec_pathways = EC_string(csv_fid, feature_name)
fid.close()
import numpy
substrates,org_strings,max_values = sub_max_std(data_string)
for sub in substrates:
i = substrates.index(sub)
for org in org_strings[i]:
j = org_strings[i].index(org)
output = output+ec_number+'\t'+sub+'\t'+org+'\t'+str(max_values[i][j])+'\t'+ ec_pathways+'\n'
print 'Processed file ' + ec + ' ' + feature_name
#Write output:
os.chdir(output_path)
fid = open('max_' + feature_name + '.txt','w')
fid.write(output)
fid.close()
os.chdir(input_path)
os.chdir(prev_path)
################################################################################
|