File size: 11,611 Bytes
70b95b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/python
################################################################################
# findMaxKcats
# Reads all EC files and finds the max value for each substrate for the chosen
# microorganism on the different enzymatic parameters [Kcat, KM, SA, MW]. 
# For each parameter Writes a table with the following columns:
#   * EC number
#   * substrate
#   * organism name//taxonomical classification (according to KEGG)
#   * Max value
#   * metabolic pathways

# Benjamin Sanchez. Last edited: 2015-08-26
# Ivan Domenzain.   Last edited: 2018-04-10
################################################################################

# Updated by:
# Author: LE YUAN
# This code should be run under the Python 2.7 environment

#INPUTS:
#1) Enzymatic parameters
features_list = ['KCAT','SA', 'MW']
#2) Path in which the EC files are stored (from script createECfiles.py):
input_path = '/Users/.../brenda_parser/EC_files'
#3) Path in which you wish to store the final table:
output_path = '/Users/.../brenda_parser/max_data'
################################################################################

#sub_max_std: Recieves a list of substrates///organism_info///values, returns
#3 lists: substrates - max - std

def sub_max_std(data):
    #Sorts list, add a last empty line and initialize variables:
    data.sort()
    data.append('')
    #for every substrate gets the index of all its appearences in the rows
    #of the EC data
    substrates, org_strings_reps, values_reps, reps_indexes = substrate_repetitions(data)
    org_strings, values =\
    find_in_substrate(substrates, org_strings_reps, values_reps, reps_indexes)
    #get maximum kvalues
    values = maximum_values(values)

    return (substrates,org_strings,values)


################################################################################
#maximum_values: Gets the maximum Kvalue for each organism related
#to each substrate
def maximum_values(values):
    for subs_values in values:
        i = values.index(subs_values)
        for org_values in subs_values:
            j = subs_values.index(org_values)
            #org_values = max(org_values)
            values[i][j] = max(values[i][j])

    return(values)
################################################################################
#find_in_substrate: Finds the organisms and K values related to each substrate
def find_in_substrate(substrates, org_strings_reps, values_reps, reps_indexes):

    org_strings = []
    values      = []
    for i in range(len(substrates)):
        subs_orgs   = []
        subs_values = []
        
        for j in reps_indexes[i]:
            
            try:
                org_index = subs_orgs.index(org_strings_reps[j])
                subs_values[org_index].append(values_reps[j])
            
            except:
                subs_orgs.append(org_strings_reps[j])
                org_index = subs_orgs.index(org_strings_reps[j])
                subs_values.append([values_reps[j]])

        org_strings.append(subs_orgs)
        values.append(subs_values)

    return(org_strings, values)

################################################################################
#substrate_repetitions: Finds from each EC file the organism and K values related
#to each substrate

def substrate_repetitions(data):
    
    substrates       = []
    org_strings_reps = []
    values_reps      = []
    reps_indexes = []

    for row in data:
        if row != '':
            row_index = data.index(row)
            #gets index if row substrate is repeated
            try:
                subs_indx = substrates.index(row[0:row.find('///')])
            #if new substrate
            except:
                substrates.append(row[0:row.find('///')])
                subs_indx = substrates.index(row[0:row.find('///')])
                reps_indexes.append([])
            #list with the indexes of the rows with repeated substrates
            reps_indexes[subs_indx].append(row_index)
            #organisms for related to each substrate
            org_strings_reps.append(row[row.find('///')+3:row.find('////')])
            #values found for each organism
            values_reps.append(float(row[row.find('////')+4:len(row)]))

    return(substrates, org_strings_reps, values_reps, reps_indexes)

################################################################################

#create_orgs_list: Finds all the organism names for which data is available in
#BRENDA database. As an output a list with all found names is created.

def brenda_orgs_list(dir):
    brenda_orgs=[]
    for ec in dir:

        fid     = open(ec,'r')
        csv_fid = csv.reader(fid,delimiter='\t')
        
        try:
            for row in csv_fid:
                if row != '' and row[0] != 'SEQ' and row[0] != '*':
                
        #Uncomment and indent properly if you want to exclude any name longer
        #two words (mutants for example, but not exclusively)
        
                    #second_blank = row[1].find(' ',row[1].find(' ')+1)

                    #if second_blank == -1:
                    org_name = row[1].lower()
                    #else:
                    #    org_name=row[1][0:second_blank]
                
                    if brenda_orgs.count(org_name)==0:
                        brenda_orgs.append(org_name)
        except:
            pass#brenda_orgs.append(org_name)
    return (brenda_orgs)


################################################################################

#KEGG_orgs_list: Creates a list with all the organisms available at KEGG, as an
#output  a table with the fields: name, KEGG code and Taxonomy is created.
def KEGG_orgs_list():

    #URL that returns available data of the gene entry on KEGG
    url = 'http://rest.kegg.jp/list/organism'
    #Try/except for avoiding timeout exceedings
    try:
        query = urllib2.urlopen(url, timeout=20).read()
    except:
        query=''

    entries   = query.split('\n')
    KEGG_list = []
    tax_kegg  = []
    codes     = []
    for row in entries:
        if row != '':
            row_list = row.split('\t')
            if len(row_list)>1:
                row_list=[row_list[2],row_list[3],row_list[1]]
                if row_list[0].find('(') != -1:
                    row_list[0]=row_list[0][0:row_list[0].find('(')-1]
       
                #Saves only organisms with specific taxonomic classifications
                taxonomy=row_list[1].lower()
                if taxonomy.find('eukaryotes')!= -1 or taxonomy.find('prokaryotes')!= -1:
                    KEGG_list.append(row_list[0].lower())
                    tax_kegg.append(taxonomy)
                    codes.append(row_list[2])
    return(KEGG_list, tax_kegg, codes)

################################################################################

#orgs_list: Two possible options 1) Merges BRENDA and KEGG organisms lists
# creates a list with only coincidences between lists.

def orgs_list(dir):

    KEGG_orgs, info_KEGG, codes = KEGG_orgs_list()

    brenda_orgs         = brenda_orgs_list(dir)
    #print brenda_orgs
    organism_list = []
    taxonomy      = []
    org_codes     = []
    #i=0
    counter=0
    
    for B_org in brenda_orgs:
        flag = False
        if B_org != '*':
            i=0
        
            while (i < len(KEGG_orgs) and flag == False):
                K_org = KEGG_orgs[i]

                if K_org.find(B_org)!= -1:
                
                    flag    = True
                    counter = counter+1
                    organism_list.append(B_org)
                    taxonomy.append(info_KEGG[i])
                    org_codes.append(codes[i])
                i = i +1
    
            if flag == False:
                organism_list.append(B_org)
                taxonomy.append('*')
                org_codes.append('*')

        #for B_org in brenda_orgs:
        #    if KEGG_orgs.count(B_org) != 0:
        #        counter=counter+1
        #        i=KEGG_orgs.index(B_org)
        #        organism_list.append(B_org)
        #        taxonomy.append(info_KEGG[i])
        #        org_codes.append(codes[i])
        #    else:
        #        organism_list.append(B_org)
        #        taxonomy.append('*')
        #        org_codes.append('*')

    return(organism_list,taxonomy,org_codes)

################################################################################

#EC_string: Receives the information in the EC file and builds a string with
#substrates, related organisms and Kvalues

def EC_string(csv_fid, feature_name):
    data_string = []
    ec_pathways = ''
    for row in csv_fid:
        if row[0] != '':
            row[4] = row[4].lower()
            mutant = max(row[4].find('mutant'),row[4].find('mutated'))
            #Ignore invalid values:
            if row[2] != '-999' and mutant == -1:
                #Only allow Kcats <= 1e7 [Bar-Even et al. 2011]
                if row[0] == feature_name and float(row[2]) <= 1e7:
                    #Looks for the organism in the organism merged list
                    #in order to include taxonomical info if available
                    try:
                        org_index  = organism_list.index(row[1].lower())
                        org_string = organism_list[org_index]+'//'+\
                                     taxonomy[org_index]+ '//'+ organism_code[org_index]
                            
                        data_string.append(row[3].lower() + '///' +\
                                            org_string + '////' + row[2])
                    except:
                        print 'Organism not found in KEGG or BRENDA'
        
            #Gets the associated not engineered pathways to the
            #EC number if present
            if row[0] == 'PATH' and row[2].lower() != 'metabolic pathways':
                if row[2].find('(engineered)') == -1:
                    ec_pathways = ec_pathways + row[2].lower() + '///'
    #If path not found an asterisk is added to the field
    if ec_pathways == '' or ec_pathways == ' ' or ec_pathways == '\0':
        ec_pathways = '*'
    if len(ec_pathways) > 3 and ec_pathways[-3] == '/':
        ec_pathways = ec_pathways[:-3]

    return(data_string, ec_pathways)

################################################################################

#Main Script

#Read all EC file names:
import os
prev_path = os.getcwd()
os.chdir(input_path)
dir_files = os.listdir(input_path)
dir_files.sort()
import urllib2
import csv
organism_list,taxonomy,organism_code = orgs_list(dir_files)

for feature_name in features_list:
    #Main loop:
    output = ''
    for ec in dir_files:
        ec_number  = ec[0:len(ec)-4]
        fid       = open(ec,'r')
        csv_fid   = csv.reader(fid,delimiter='\t')
        #Builds a string with all the information in the EC file
        data_string, ec_pathways = EC_string(csv_fid, feature_name)
        fid.close()

        import numpy
        substrates,org_strings,max_values = sub_max_std(data_string)
    
        for sub in substrates:
            i = substrates.index(sub)
            for org in org_strings[i]:
                j = org_strings[i].index(org)
                output = output+ec_number+'\t'+sub+'\t'+org+'\t'+str(max_values[i][j])+'\t'+ ec_pathways+'\n'

    
        print 'Processed file ' + ec + ' ' + feature_name
    #Write output:
    os.chdir(output_path)
    fid  = open('max_' + feature_name + '.txt','w')
    fid.write(output)
    fid.close()
    os.chdir(input_path)
os.chdir(prev_path)

################################################################################