File size: 8,931 Bytes
2d12bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/python
# coding: utf-8

# Author: LE YUAN
# Date: 2020-10-23

import pickle
import sys
import timeit
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.metrics import mean_squared_error,r2_score


class KcatPrediction(nn.Module):
    def __init__(self, device, n_fingerprint, n_word, dim, layer_gnn, window, layer_cnn, layer_output):
        super(KcatPrediction, self).__init__()
        self.embed_fingerprint = nn.Embedding(n_fingerprint, dim)
        self.embed_word = nn.Embedding(n_word, dim)
        self.W_gnn = nn.ModuleList([nn.Linear(dim, dim)
                                    for _ in range(layer_gnn)])
        self.W_cnn = nn.ModuleList([nn.Conv2d(
                     in_channels=1, out_channels=1, kernel_size=2*window+1,
                     stride=1, padding=window) for _ in range(layer_cnn)])
        self.W_attention = nn.Linear(dim, dim)
        self.W_out = nn.ModuleList([nn.Linear(2*dim, 2*dim)
                                    for _ in range(layer_output)])
        # self.W_interaction = nn.Linear(2*dim, 2)
        self.W_interaction = nn.Linear(2*dim, 1)

        self.device = device
        self.dim = dim
        self.layer_gnn = layer_gnn
        self.window = window
        self.layer_cnn = layer_cnn
        self.layer_output = layer_output

    def gnn(self, xs, A, layer):
        for i in range(layer):
            hs = torch.relu(self.W_gnn[i](xs))
            xs = xs + torch.matmul(A, hs)
        # return torch.unsqueeze(torch.sum(xs, 0), 0)
        return torch.unsqueeze(torch.mean(xs, 0), 0)

    def attention_cnn(self, x, xs, layer):
        """The attention mechanism is applied to the last layer of CNN."""

        xs = torch.unsqueeze(torch.unsqueeze(xs, 0), 0)
        for i in range(layer):
            xs = torch.relu(self.W_cnn[i](xs))
        xs = torch.squeeze(torch.squeeze(xs, 0), 0)

        h = torch.relu(self.W_attention(x))
        hs = torch.relu(self.W_attention(xs))
        weights = torch.tanh(F.linear(h, hs))
        ys = torch.t(weights) * hs

        # return torch.unsqueeze(torch.sum(ys, 0), 0)
        return torch.unsqueeze(torch.mean(ys, 0), 0)

    def forward(self, inputs):

        fingerprints, adjacency, words = inputs

        layer_gnn = 3
        layer_cnn = 3
        layer_output = 3

        """Compound vector with GNN."""
        fingerprint_vectors = self.embed_fingerprint(fingerprints)
        compound_vector = self.gnn(fingerprint_vectors, adjacency, layer_gnn)

        """Protein vector with attention-CNN."""
        word_vectors = self.embed_word(words)
        protein_vector = self.attention_cnn(compound_vector,
                                            word_vectors, layer_cnn)

        """Concatenate the above two vectors and output the interaction."""
        cat_vector = torch.cat((compound_vector, protein_vector), 1)
        for j in range(layer_output):
            cat_vector = torch.relu(self.W_out[j](cat_vector))
        interaction = self.W_interaction(cat_vector)
        # print(interaction)

        return interaction

    def __call__(self, data, train=True):

        inputs, correct_interaction = data[:-1], data[-1]
        predicted_interaction = self.forward(inputs)
        print(predicted_interaction)

        if train:
            loss = F.mse_loss(predicted_interaction, correct_interaction)
            return loss
        else:
            correct_values = correct_interaction.to('cpu').data.numpy()
            predicted_values = predicted_interaction.to('cpu').data.numpy()[0]
            # correct_values = np.concatenate(correct_values)
            # predicted_values = np.concatenate(predicted_values)
            # ys = F.softmax(predicted_interaction, 1).to('cpu').data.numpy()
            # predicted_values = list(map(lambda x: np.argmax(x), ys))
            print(correct_values)
            print(predicted_values)
            # predicted_scores = list(map(lambda x: x[1], ys))
            return correct_values, predicted_values


class Trainer(object):
    def __init__(self, model):
        self.model = model
        self.optimizer = optim.Adam(self.model.parameters(),
                                    lr=lr, weight_decay=weight_decay)

    def train(self, dataset):
        np.random.shuffle(dataset)
        N = len(dataset)
        loss_total = 0
        for data in dataset:
            loss = self.model(data)
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
            loss_total += loss.to('cpu').data.numpy()
        return loss_total


class Tester(object):
    def __init__(self, model):
        self.model = model

    def test(self, dataset):
        N = len(dataset)
        SAE = 0  # sum absolute error.
        testY, testPredict = [], []
        for data in dataset :
            (correct_values, predicted_values) = self.model(data, train=False)
            SAE += sum(np.abs(predicted_values-correct_values))
            testY.append(correct_values)
            testPredict.append(predicted_values)
        MAE = SAE / N  # mean absolute error.
        rmse = np.sqrt(mean_squared_error(testY,testPredict))
        r2 = r2_score(testY,testPredict)
        return MAE, rmse, r2

    def save_MAEs(self, MAEs, filename):
        with open(filename, 'a') as f:
            f.write('\t'.join(map(str, MAEs)) + '\n')

    def save_model(self, model, filename):
        torch.save(model.state_dict(), filename)

def load_tensor(file_name, dtype):
    return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]


def load_pickle(file_name):
    with open(file_name, 'rb') as f:
        return pickle.load(f)

def shuffle_dataset(dataset, seed):
    np.random.seed(seed)
    np.random.shuffle(dataset)
    return dataset


def split_dataset(dataset, ratio):
    n = int(ratio * len(dataset))
    dataset_1, dataset_2 = dataset[:n], dataset[n:]
    return dataset_1, dataset_2


if __name__ == "__main__":

    """Hyperparameters."""
    (DATASET, radius, ngram, dim, layer_gnn, window, layer_cnn, layer_output,
     lr, lr_decay, decay_interval, weight_decay, iteration,
     setting) = sys.argv[1:]
    (dim, layer_gnn, window, layer_cnn, layer_output, decay_interval,
     iteration) = map(int, [dim, layer_gnn, window, layer_cnn, layer_output,
                            decay_interval, iteration])
    lr, lr_decay, weight_decay = map(float, [lr, lr_decay, weight_decay])

    """CPU or GPU."""
    if torch.cuda.is_available():
        device = torch.device('cuda')
        print('The code uses GPU...')
    else:
        device = torch.device('cpu')
        print('The code uses CPU!!!')

    """Load preprocessed data."""
    dir_input = ('../../Data/input/')
    compounds = load_tensor(dir_input + 'compounds', torch.LongTensor)
    adjacencies = load_tensor(dir_input + 'adjacencies', torch.FloatTensor)
    proteins = load_tensor(dir_input + 'proteins', torch.LongTensor)
    interactions = load_tensor(dir_input + 'regression', torch.FloatTensor)
    fingerprint_dict = load_pickle(dir_input + 'fingerprint_dict.pickle')
    word_dict = load_pickle(dir_input + 'sequence_dict.pickle')
    n_fingerprint = len(fingerprint_dict)
    n_word = len(word_dict)

    """Create a dataset and split it into train/dev/test."""
    dataset = list(zip(compounds, adjacencies, proteins, interactions))
    dataset = shuffle_dataset(dataset, 1234)
    print(len(dataset))
    dataset_train, dataset_ = split_dataset(dataset, 0.8)
    dataset_dev, dataset_test = split_dataset(dataset_, 0.5)

    """Set a model."""
    torch.manual_seed(1234)
    model = KcatPrediction().to(device)
    trainer = Trainer(model)
    tester = Tester(model)

    """Output files."""
    file_MAEs = '../../Results/output/MAEs--' + setting + '.txt'
    file_model = '../../Results/output/' + setting
    # MAEs = ('Epoch\tTime(sec)\tLoss_train\tMAE_dev\t'
    #         'MAE_test\tPrecision_test\tRecall_test')
    MAEs = ('Epoch\tTime(sec)\tLoss_train\tMAE_dev\tMAE_test\tRMSE_dev\tRMSE_test\tR2_dev\tR2_test')
    with open(file_MAEs, 'w') as f:
        f.write(MAEs + '\n')

    """Start training."""
    print('Training...')
    print(MAEs)
    start = timeit.default_timer()

    for epoch in range(1, iteration):

        if epoch % decay_interval == 0:
            trainer.optimizer.param_groups[0]['lr'] *= lr_decay

        loss_train = trainer.train(dataset_train)
        MAE_dev, RMSE_dev, R2_dev = tester.test(dataset_dev)
        MAE_test, RMSE_test, R2_test = tester.test(dataset_test)

        end = timeit.default_timer()
        time = end - start

        MAEs = [epoch, time, loss_train, MAE_dev,
                MAE_test, RMSE_dev, RMSE_test, R2_dev, R2_test]
        tester.save_MAEs(MAEs, file_MAEs)
        tester.save_model(model, file_model)

        print('\t'.join(map(str, MAEs)))