File size: 24,568 Bytes
2d12bc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
#!/usr/bin/python
# coding: utf-8
# Author: LE YUAN
import os
import csv
import math
import subsequence_model
import torch
import json
import pickle
import numpy as np
from rdkit import Chem
from Bio import SeqIO
from collections import Counter
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib.legend_handler import HandlerPathCollection
from scipy import stats
import seaborn as sns
import pandas as pd
from sklearn.metrics import mean_squared_error,r2_score
fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
edge_dict = subsequence_model.load_pickle('../../Data/input/edge_dict.pickle')
word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')
def split_sequence(sequence, ngram):
sequence = '-' + sequence + '='
# print(sequence)
# words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]
words = list()
for i in range(len(sequence)-ngram+1) :
try :
words.append(word_dict[sequence[i:i+ngram]])
except :
word_dict[sequence[i:i+ngram]] = 0
words.append(word_dict[sequence[i:i+ngram]])
return np.array(words)
# return word_dict
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# atom_dict = defaultdict(lambda: len(atom_dict))
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
# print(atoms)
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
atoms = [atom_dict[a] for a in atoms]
# atoms = list()
# for a in atoms :
# try:
# atoms.append(atom_dict[a])
# except :
# atom_dict[a] = 0
# atoms.append(atom_dict[a])
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
# bond_dict = defaultdict(lambda: len(bond_dict))
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
# fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
# edge_dict = defaultdict(lambda: len(edge_dict))
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
# fingerprints.append(fingerprint_dict[fingerprint])
# fingerprints.append(fingerprint_dict.get(fingerprint))
try :
fingerprints.append(fingerprint_dict[fingerprint])
except :
fingerprint_dict[fingerprint] = 0
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
# edge = edge_dict[(both_side, edge)]
# edge = edge_dict.get((both_side, edge))
try :
edge = edge_dict[(both_side, edge)]
except :
edge_dict[(both_side, edge)] = 0
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)
def create_adjacency(mol):
adjacency = Chem.GetAdjacencyMatrix(mol)
return np.array(adjacency)
def dump_dictionary(dictionary, filename):
with open(filename, 'wb') as file:
pickle.dump(dict(dictionary), file)
def load_tensor(file_name, dtype):
return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]
# To set a constant marker size in the legend
# https://stackoverflow.com/questions/47115869/how-do-i-change-the-size-of-the-scatter-markers-in-the-legend
marker_size = 25
def update_prop(handle, orig):
handle.update_from(orig)
handle.set_sizes([marker_size])
def plot_attention_weights(attention_profiles, wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased) :
positions = list()
weights = list()
i = 0
for attention in attention_profiles :
i += 1
positions.append(i)
weights.append(float(attention))
plt.figure(figsize=(2.0,1.5))
# To solve the 'Helvetica' font cannot be used in PDF file
# https://stackoverflow.com/questions/59845568/the-pdf-backend-does-not-currently-support-the-selected-font
rc('font',**{'family':'serif','serif':['Helvetica']})
plt.rcParams['pdf.fonttype'] = 42
plt.axes([0.12,0.12,0.83,0.83])
# plt.rcParams['xtick.direction'] = 'in'
# plt.rcParams['ytick.direction'] = 'in'
plt.tick_params(direction='in')
plt.tick_params(which='major',length=1.5)
plt.tick_params(which='major',width=0.4)
plt.plot(positions, weights, color='k', linestyle='--', linewidth=0.75) # color='k' color='#A65628'
# s = [10*4**n for n in range(len(x))] # change the size according to the detailed number
# plt.scatter(wildtype_like_positions, wildtype_like, s=3, color='#2166ac', marker='^') # markersize=1
# plt.scatter(wildtype_decreased_positions, wildtype_decreased, s=3, color='#b2182b', marker='^')
print(Counter(wildtype_like_positions))
print(Counter(wildtype_decreased_positions))
# Counter({88: 1, 159: 1, 89: 1, 244: 1, 219: 1})
# Counter({88: 14, 86: 2, 242: 2, 243: 1, 33: 1, 84: 1, 201: 1, 200: 1, 257: 1})
# for position in wildtype_like_positions :
# print(Counter(wildtype_like_positions)[position])
# Increase scatter marker size
# https://www.delftstack.com/howto/matplotlib/how-to-set-marker-size-of-scatter-plot-in-matplotlib/
plt.scatter(wildtype_like_positions, wildtype_like, s=[Counter(wildtype_like_positions)[position]*5 for position in wildtype_like_positions], color='#2166ac', marker='o', label='Wildtype_like') # marker='o' or marker='s'
sc = plt.scatter(wildtype_decreased_positions, wildtype_decreased, s=[Counter(wildtype_decreased_positions)[position]*5 for position in wildtype_decreased_positions], color='#b2182b', marker='o', label='Wildtype_decreased')
plt.rcParams['font.family'] = 'Helvetica'
plt.xlabel('Residue position', fontsize=7)
plt.ylabel('Attention weight', fontsize=7)
# plt.ylabel('Importance contribution', fontsize=7)
plt.xticks([0,50,100,150,200,250,300])
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])
plt.xticks(fontsize=6)
plt.yticks(fontsize=6)
ax = plt.gca()
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left'].set_linewidth(0.5)
ax.spines['top'].set_linewidth(0.5)
ax.spines['right'].set_linewidth(0.5)
# To set a constant marker size in the legend
# https://stackoverflow.com/questions/47115869/how-do-i-change-the-size-of-the-scatter-markers-in-the-legend
plt.legend(handler_map={type(sc): HandlerPathCollection(update_func=update_prop)}, frameon=False, markerscale=2.0, numpoints=1, prop={"size":6})
# labels = ax.get_legend_handles_labels()[1]
# plt.legend(handles[0:2], labels[0:2], loc=1, markerscale=2.0, frameon=False, prop={'size': 6})
# plt.legend(frameon=False, markerscale=2.0, numpoints=1, prop={"size":6})
plt.savefig("../../Results/figures/Fig3e.pdf", dpi=400, bbox_inches = 'tight')
class Predictor(object):
def __init__(self, model):
self.model = model
def predict(self, data):
predicted_value,attention_profiles = self.model.forward(data)
return predicted_value, attention_profiles
def extract_wildtype_mutant() :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
entry_keys = list()
for data in Kcat_data :
# print(data['ECNumber'])
# print(data['Substrate'])
# print(data['Organism'])
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
entry_key = substrate + '&' + organism + '&' + EC
# print(entry_key.lower())
entry_keys.append(entry_key)
entry_dict = dict(Counter(entry_keys))
# print(entry_dict)
duplicated_keys = [key for key, value in entry_dict.items() if value > 1]
# print(duplicated_keys)
duplicated_dict = {key:value for key, value in entry_dict.items() if value > 1}
# print(duplicated_dict)
# https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value
# print(sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30])
duplicated_list = sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30]
for duplicated in duplicated_list[:1] :
# print('The subtrate name:', duplicated[0])
for data in Kcat_data :
# duplicated_one_entry = duplicated_list[0].split('&')
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
one_entry = substrate + '&' + organism + '&' + EC
if one_entry == duplicated[0] :
enzyme_type = data['Type']
Kcat_value = data['Value']
# print('Substrate:', substrate)
# print('%s enzyme: %s' %(enzyme_type, Kcat_value))
# print('----'*15+'\n')
return duplicated_list
def compare_list(mutant, wildtype) :
different_attentions = list()
for i in range(0, len(wildtype)) :
if mutant[i] != wildtype[i] :
different_attentions.append(mutant[i])
else :
continue
return different_attentions
def compare_mutant_wildtype_sequence(mutant, wildtype) :
different_positions = list()
for i in range(0, len(wildtype)) :
if mutant[i] != wildtype[i] :
# different_positions.append(mutant[i])
different_positions.append(i)
else :
continue
return different_positions
def extract_wildtype_kcat(entry) :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
for data in Kcat_data :
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
one_entry = substrate + '&' + organism + '&' + EC
if one_entry == entry :
enzyme_type = data['Type']
if enzyme_type == 'wildtype' :
wildtype_kcat = float(data['Value'])
if wildtype_kcat :
return wildtype_kcat
else :
return None
def extract_wildtype_sequence(entry) :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
for data in Kcat_data :
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
one_entry = substrate + '&' + organism + '&' + EC
if one_entry == entry :
enzyme_type = data['Type']
if enzyme_type == 'wildtype' :
wildtype_sequence = data['Sequence']
if wildtype_sequence :
return wildtype_sequence
else :
return None
def extract_wildtype_attention(wildtype_entry) :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict)
# print(n_fingerprint) # 3958
# print(n_word) # 8542
radius=2
ngram=3
dim=10
layer_gnn=3
side=5
window=11
layer_cnn=3
layer_output=3
lr=1e-3
lr_decay=0.5
decay_interval=10
weight_decay=1e-6
iteration=100
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# torch.manual_seed(1234)
Kcat_model = subsequence_model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
# print(state_dict.keys())
# subsequence_model.eval()
predictor = Predictor(Kcat_model)
for data in Kcat_data :
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
enzyme_type = data['Type']
entry = substrate + '&' + organism + '&' + EC
if entry == wildtype_entry and enzyme_type == 'wildtype' :
smiles = data['Smiles']
sequence = data['Sequence']
Kcat = data['Value']
if "." not in smiles and float(Kcat) > 0:
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
# print(atoms)
i_jbond_dict = create_ijbonddict(mol)
# print(i_jbond_dict)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
# print(fingerprints)
# compounds.append(fingerprints)
adjacency = create_adjacency(mol)
# print(adjacency)
# adjacencies.append(adjacency)
words = split_sequence(sequence,ngram)
# print(words)
# proteins.append(words)
fingerprints = torch.LongTensor(fingerprints)
adjacency = torch.FloatTensor(adjacency)
words = torch.LongTensor(words)
inputs = [fingerprints, adjacency, words]
value = float(data['Value'])
# print('Current kcat value:', value)
prediction, wildtype_attention_profiles = predictor.predict(inputs)
# Kcat_log_value = prediction.item()
# Kcat_value = math.pow(2,Kcat_log_value)
# plot_attention_weights(attention_profiles)
return wildtype_attention_profiles, sequence
def output_wildtype_enzyme(wildtype_attention_profiles, sequence) :
sequence_length = len(sequence)
attention_weights_length = len(wildtype_attention_profiles)
print('The length of wildtype enzyme:', sequence_length)
print('The length of attention weights:', attention_weights_length)
print(sequence)
print(wildtype_attention_profiles)
with open('../../Results/output/supple_wildtype_PNP_attention_weights.tsv', 'w') as outfile :
i = 0
items = ['Sequence position', 'Amino acid', 'Attention weight']
outfile.write('\t'.join(items) + '\n')
for attention in wildtype_attention_profiles :
i += 1
line = [str(i), sequence[i-1], attention]
outfile.write('\t'.join(line) + '\n')
def wildtype_like_decreased_info() :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
wildtype_mutant_entries = extract_wildtype_mutant()
fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict)
# print(n_fingerprint) # 3958
# print(n_word) # 8542
radius=2
ngram=3
# n_fingerprint = 3958
# n_word = 8542
dim=10
layer_gnn=3
side=5
window=11
layer_cnn=3
layer_output=3
lr=1e-3
lr_decay=0.5
decay_interval=10
weight_decay=1e-6
iteration=100
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# torch.manual_seed(1234)
Kcat_model = subsequence_model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
# print(state_dict.keys())
# subsequence_model.eval()
predictor = Predictor(Kcat_model)
print('It\'s time to start the prediction!')
print('-----------------------------------')
i = 0
alldata = dict()
alldata['type'] = list()
alldata['entry'] = list()
alldata['weights'] = list()
for wildtype_mutant_entry in wildtype_mutant_entries :
entry_names = wildtype_mutant_entry[0].split('&')
# print('This entry is:', entry_names)
# print('The total amount of wildtype and variant enzymes in the entry is:', wildtype_mutant_entry[1])
experimental_values = list()
predicted_values = list()
wildtype_like = list()
wildtype_decreased = list()
wildtype_like_positions = list()
wildtype_decreased_positions = list()
if entry_names[0] == 'Inosine' :
print('This entry is:', entry_names)
for data in Kcat_data :
# print(data)
# print(data['Substrate'])
substrate = data['Substrate']
organism = data['Organism']
EC = data['ECNumber']
entry = substrate + '&' + organism + '&' + EC
if entry == wildtype_mutant_entry[0] :
wildtype_kcat = extract_wildtype_kcat(entry)
wildtype_sequence = extract_wildtype_sequence(entry)
wildtype_attention_profiles =extract_wildtype_attention(entry)[0]
# print(len(wildtype_attention_profiles))
# print(wildtype_attention_profiles)
# print('wildtype kcat:', wildtype_kcat)
# print(data)
# if wildtype_kcat :
i += 1
# print('This is', i, '---------------------------------------')
smiles = data['Smiles']
sequence = data['Sequence']
enzyme_type = data['Type']
Kcat = data['Value']
if "." not in smiles and float(Kcat) > 0:
# i += 1
# print('This is',i)
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
# print(atoms)
i_jbond_dict = create_ijbonddict(mol)
# print(i_jbond_dict)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
# print(fingerprints)
# compounds.append(fingerprints)
adjacency = create_adjacency(mol)
# print(adjacency)
# adjacencies.append(adjacency)
words = split_sequence(sequence,ngram)
# print(words)
# proteins.append(words)
fingerprints = torch.LongTensor(fingerprints)
adjacency = torch.FloatTensor(adjacency)
words = torch.LongTensor(words)
inputs = [fingerprints, adjacency, words]
value = float(data['Value'])
# print('Current kcat value:', value)
normalized_value = value/wildtype_kcat
# print('%.2f' % normalized_value)
# print(type(value))
# print(type(normalized_value))
experimental_values.append(math.log10(value))
prediction, attention_profiles = predictor.predict(inputs)
# different_attentions = compare_list(attention_profiles, wildtype_attention_profiles)
# different_weights = compare_list(attention_profiles, wildtype_attention_profiles)
different_positions = compare_mutant_wildtype_sequence(sequence, wildtype_sequence)
entry_name = entry_names[0]
if normalized_value >= 0.5 and normalized_value < 2.0 :
# for weight in different_weights :
for position in different_positions :
wildtype_like_positions.append(position+1)
wildtype_like.append(float(wildtype_attention_profiles[position]))
alldata['type'].append('Wildtype_like')
alldata['entry'].append(entry_name)
alldata['weights'].append(float(wildtype_attention_profiles[position]))
if normalized_value < 0.5 :
# for weight in different_weights :
for position in different_positions :
wildtype_decreased_positions.append(position+1)
wildtype_decreased.append(float(wildtype_attention_profiles[position]))
alldata['type'].append('Wildtype_decreased')
alldata['entry'].append(entry_name)
alldata['weights'].append(float(wildtype_attention_profiles[position]))
print('wildtype_like_positions:', wildtype_like_positions)
print('wildtype_decreased_positions:', wildtype_decreased_positions)
# print(set(wildtype_decreased_positions))
# print(len(wildtype_like_positions))
# print(len(wildtype_decreased_positions))
print('Attention weights in wildtype_like:', wildtype_like)
print('Attention weights in wildtype_decreased:', wildtype_decreased)
# print(set(wildtype_decreased))
return wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased
def main() :
substrate, organism, EC = ('Inosine', 'Homo sapiens', '2.4.2.1')
entry = substrate + '&' + organism + '&' + EC
wildtype_attentions, sequence = extract_wildtype_attention(entry)
# output_wildtype_enzyme(wildtype_attentions, sequence)
wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased = wildtype_like_decreased_info()
plot_attention_weights(wildtype_attentions, wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased)
if __name__ == '__main__' :
main()
|