File size: 24,568 Bytes
2d12bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#!/usr/bin/python
# coding: utf-8

# Author: LE YUAN

import os
import csv
import math
import subsequence_model
import torch
import json
import pickle
import numpy as np
from rdkit import Chem
from Bio import SeqIO
from collections import Counter
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib.legend_handler import HandlerPathCollection
from scipy import stats
import seaborn as sns
import pandas as pd
from sklearn.metrics import mean_squared_error,r2_score


fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
edge_dict = subsequence_model.load_pickle('../../Data/input/edge_dict.pickle')
word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')

def split_sequence(sequence, ngram):
    sequence = '-' + sequence + '='
    # print(sequence)
    # words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]

    words = list()
    for i in range(len(sequence)-ngram+1) :
        try :
            words.append(word_dict[sequence[i:i+ngram]])
        except :
            word_dict[sequence[i:i+ngram]] = 0
            words.append(word_dict[sequence[i:i+ngram]])

    return np.array(words)
    # return word_dict

def create_atoms(mol):
    """Create a list of atom (e.g., hydrogen and oxygen) IDs
    considering the aromaticity."""
    # atom_dict = defaultdict(lambda: len(atom_dict))
    atoms = [a.GetSymbol() for a in mol.GetAtoms()]
    # print(atoms)
    for a in mol.GetAromaticAtoms():
        i = a.GetIdx()
        atoms[i] = (atoms[i], 'aromatic')
    atoms = [atom_dict[a] for a in atoms]
    # atoms = list()
    # for a in atoms :
    #     try: 
    #         atoms.append(atom_dict[a])
    #     except :
    #         atom_dict[a] = 0
    #         atoms.append(atom_dict[a])

    return np.array(atoms)

def create_ijbonddict(mol):
    """Create a dictionary, which each key is a node ID
    and each value is the tuples of its neighboring node
    and bond (e.g., single and double) IDs."""
    # bond_dict = defaultdict(lambda: len(bond_dict))
    i_jbond_dict = defaultdict(lambda: [])
    for b in mol.GetBonds():
        i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
        bond = bond_dict[str(b.GetBondType())]
        i_jbond_dict[i].append((j, bond))
        i_jbond_dict[j].append((i, bond))
    return i_jbond_dict

def extract_fingerprints(atoms, i_jbond_dict, radius):
    """Extract the r-radius subgraphs (i.e., fingerprints)
    from a molecular graph using Weisfeiler-Lehman algorithm."""

    # fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
    # edge_dict = defaultdict(lambda: len(edge_dict))

    if (len(atoms) == 1) or (radius == 0):
        fingerprints = [fingerprint_dict[a] for a in atoms]

    else:
        nodes = atoms
        i_jedge_dict = i_jbond_dict

        for _ in range(radius):

            """Update each node ID considering its neighboring nodes and edges
            (i.e., r-radius subgraphs or fingerprints)."""
            fingerprints = []
            for i, j_edge in i_jedge_dict.items():
                neighbors = [(nodes[j], edge) for j, edge in j_edge]
                fingerprint = (nodes[i], tuple(sorted(neighbors)))
                # fingerprints.append(fingerprint_dict[fingerprint])
                # fingerprints.append(fingerprint_dict.get(fingerprint))
                try :
                    fingerprints.append(fingerprint_dict[fingerprint])
                except :
                    fingerprint_dict[fingerprint] = 0
                    fingerprints.append(fingerprint_dict[fingerprint])

            nodes = fingerprints

            """Also update each edge ID considering two nodes
            on its both sides."""
            _i_jedge_dict = defaultdict(lambda: [])
            for i, j_edge in i_jedge_dict.items():
                for j, edge in j_edge:
                    both_side = tuple(sorted((nodes[i], nodes[j])))
                    # edge = edge_dict[(both_side, edge)]
                    # edge = edge_dict.get((both_side, edge))
                    try :
                        edge = edge_dict[(both_side, edge)]
                    except :
                        edge_dict[(both_side, edge)] = 0
                        edge = edge_dict[(both_side, edge)]

                    _i_jedge_dict[i].append((j, edge))
            i_jedge_dict = _i_jedge_dict

    return np.array(fingerprints)

def create_adjacency(mol):
    adjacency = Chem.GetAdjacencyMatrix(mol)
    return np.array(adjacency)

def dump_dictionary(dictionary, filename):
    with open(filename, 'wb') as file:
        pickle.dump(dict(dictionary), file)

def load_tensor(file_name, dtype):
    return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]

# To set a constant marker size in the legend
# https://stackoverflow.com/questions/47115869/how-do-i-change-the-size-of-the-scatter-markers-in-the-legend
marker_size = 25
def update_prop(handle, orig):
    handle.update_from(orig)
    handle.set_sizes([marker_size])

def plot_attention_weights(attention_profiles, wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased) :
    positions = list()
    weights = list()
    i = 0
    for attention in attention_profiles :
        i += 1
        positions.append(i)
        weights.append(float(attention))

    plt.figure(figsize=(2.0,1.5))

    # To solve the 'Helvetica' font cannot be used in PDF file
    # https://stackoverflow.com/questions/59845568/the-pdf-backend-does-not-currently-support-the-selected-font
    rc('font',**{'family':'serif','serif':['Helvetica']})
    plt.rcParams['pdf.fonttype'] = 42

    plt.axes([0.12,0.12,0.83,0.83])

    # plt.rcParams['xtick.direction'] = 'in'
    # plt.rcParams['ytick.direction'] = 'in'

    plt.tick_params(direction='in')
    plt.tick_params(which='major',length=1.5)
    plt.tick_params(which='major',width=0.4)

    plt.plot(positions, weights, color='k', linestyle='--', linewidth=0.75)  # color='k'  color='#A65628'

    # s = [10*4**n for n in range(len(x))]  # change the size according to the detailed number

    # plt.scatter(wildtype_like_positions, wildtype_like, s=3, color='#2166ac', marker='^')  # markersize=1
    # plt.scatter(wildtype_decreased_positions, wildtype_decreased, s=3, color='#b2182b', marker='^')

    print(Counter(wildtype_like_positions))
    print(Counter(wildtype_decreased_positions))
    # Counter({88: 1, 159: 1, 89: 1, 244: 1, 219: 1})
    # Counter({88: 14, 86: 2, 242: 2, 243: 1, 33: 1, 84: 1, 201: 1, 200: 1, 257: 1})
    # for position in wildtype_like_positions :
    #     print(Counter(wildtype_like_positions)[position])

    # Increase scatter marker size
    # https://www.delftstack.com/howto/matplotlib/how-to-set-marker-size-of-scatter-plot-in-matplotlib/
    plt.scatter(wildtype_like_positions, wildtype_like, s=[Counter(wildtype_like_positions)[position]*5 for position in wildtype_like_positions], color='#2166ac', marker='o', label='Wildtype_like')  # marker='o' or marker='s'
    sc = plt.scatter(wildtype_decreased_positions, wildtype_decreased, s=[Counter(wildtype_decreased_positions)[position]*5 for position in wildtype_decreased_positions], color='#b2182b', marker='o', label='Wildtype_decreased')
 
    plt.rcParams['font.family'] = 'Helvetica'
    plt.xlabel('Residue position', fontsize=7)
    plt.ylabel('Attention weight', fontsize=7)
    # plt.ylabel('Importance contribution', fontsize=7)

    plt.xticks([0,50,100,150,200,250,300])
    plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4])

    plt.xticks(fontsize=6)
    plt.yticks(fontsize=6)

    ax = plt.gca()
    ax.spines['bottom'].set_linewidth(0.5)
    ax.spines['left'].set_linewidth(0.5)
    ax.spines['top'].set_linewidth(0.5)
    ax.spines['right'].set_linewidth(0.5)

    # To set a constant marker size in the legend
    # https://stackoverflow.com/questions/47115869/how-do-i-change-the-size-of-the-scatter-markers-in-the-legend
    plt.legend(handler_map={type(sc): HandlerPathCollection(update_func=update_prop)}, frameon=False, markerscale=2.0, numpoints=1, prop={"size":6})

    # labels = ax.get_legend_handles_labels()[1]
    # plt.legend(handles[0:2], labels[0:2], loc=1, markerscale=2.0, frameon=False, prop={'size': 6})
    # plt.legend(frameon=False, markerscale=2.0, numpoints=1, prop={"size":6})

    plt.savefig("../../Results/figures/Fig3e.pdf", dpi=400, bbox_inches = 'tight')

class Predictor(object):
    def __init__(self, model):
        self.model = model

    def predict(self, data):
        predicted_value,attention_profiles = self.model.forward(data)

        return predicted_value, attention_profiles

def extract_wildtype_mutant() :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    entry_keys = list()
    for data in Kcat_data :
        # print(data['ECNumber'])
        # print(data['Substrate'])
        # print(data['Organism'])

        substrate = data['Substrate']
        organism = data['Organism']
        EC = data['ECNumber']
        entry_key = substrate + '&' + organism + '&' + EC
        # print(entry_key.lower())
        entry_keys.append(entry_key)

    entry_dict = dict(Counter(entry_keys))
    # print(entry_dict)

    duplicated_keys = [key for key, value in entry_dict.items() if value > 1]
    # print(duplicated_keys)

    duplicated_dict = {key:value for key, value in entry_dict.items() if value > 1}
    # print(duplicated_dict)
    # https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value
    # print(sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30])
    duplicated_list = sorted(duplicated_dict.items(), key=lambda x: x[1], reverse=True)[:30]

    for duplicated in duplicated_list[:1] :
        # print('The subtrate name:', duplicated[0])
        for data in Kcat_data :
            # duplicated_one_entry = duplicated_list[0].split('&')
            substrate = data['Substrate']
            organism = data['Organism']
            EC = data['ECNumber']
            one_entry = substrate + '&' + organism + '&' + EC
            if one_entry == duplicated[0] :
                enzyme_type = data['Type']
                Kcat_value = data['Value']
                # print('Substrate:', substrate)
                # print('%s enzyme: %s' %(enzyme_type, Kcat_value))
        # print('----'*15+'\n')

    return duplicated_list

def compare_list(mutant, wildtype) :
    different_attentions = list()
    for i in range(0, len(wildtype)) :
        if mutant[i]  !=  wildtype[i] :
            different_attentions.append(mutant[i])
        else :
            continue

    return different_attentions

def compare_mutant_wildtype_sequence(mutant, wildtype) :
    different_positions = list()
    for i in range(0, len(wildtype)) :
        if mutant[i]  !=  wildtype[i] :
            # different_positions.append(mutant[i])
            different_positions.append(i)
        else :
            continue

    return different_positions

def extract_wildtype_kcat(entry) :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    for data in Kcat_data :
        substrate = data['Substrate']
        organism = data['Organism']
        EC = data['ECNumber']
        one_entry = substrate + '&' + organism + '&' + EC
        if one_entry == entry :
            enzyme_type = data['Type']
            if enzyme_type == 'wildtype' :
                wildtype_kcat = float(data['Value'])

    if wildtype_kcat :
        return wildtype_kcat
    else :
        return None

def extract_wildtype_sequence(entry) :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    for data in Kcat_data :
        substrate = data['Substrate']
        organism = data['Organism']
        EC = data['ECNumber']
        one_entry = substrate + '&' + organism + '&' + EC
        if one_entry == entry :
            enzyme_type = data['Type']
            if enzyme_type == 'wildtype' :
                wildtype_sequence = data['Sequence']

    if wildtype_sequence :
        return wildtype_sequence
    else :
        return None

def extract_wildtype_attention(wildtype_entry) :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
    atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
    bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
    word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')
    n_fingerprint = len(fingerprint_dict)
    n_word = len(word_dict)
    # print(n_fingerprint)  # 3958
    # print(n_word)  # 8542

    radius=2
    ngram=3
    dim=10
    layer_gnn=3
    side=5
    window=11
    layer_cnn=3
    layer_output=3
    lr=1e-3
    lr_decay=0.5
    decay_interval=10
    weight_decay=1e-6
    iteration=100

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # torch.manual_seed(1234)
    Kcat_model = subsequence_model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
    Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
    # print(state_dict.keys())
    # subsequence_model.eval()
    predictor = Predictor(Kcat_model)

    for data in Kcat_data :
        substrate = data['Substrate']
        organism = data['Organism']
        EC = data['ECNumber']
        enzyme_type = data['Type']
        entry = substrate + '&' + organism + '&' + EC

        if entry == wildtype_entry and enzyme_type == 'wildtype' :
            smiles = data['Smiles']
            sequence = data['Sequence']
            Kcat = data['Value']
            if "." not in smiles and float(Kcat) > 0:

                mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
                atoms = create_atoms(mol)
                # print(atoms)
                i_jbond_dict = create_ijbonddict(mol)
                # print(i_jbond_dict)

                fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
                # print(fingerprints)
                # compounds.append(fingerprints)

                adjacency = create_adjacency(mol)
                # print(adjacency)
                # adjacencies.append(adjacency)

                words = split_sequence(sequence,ngram)
                # print(words)
                # proteins.append(words)

                fingerprints = torch.LongTensor(fingerprints)
                adjacency = torch.FloatTensor(adjacency)
                words = torch.LongTensor(words)

                inputs = [fingerprints, adjacency, words]

                value = float(data['Value'])
                # print('Current kcat value:', value)

                prediction, wildtype_attention_profiles = predictor.predict(inputs)
                # Kcat_log_value = prediction.item()
                # Kcat_value = math.pow(2,Kcat_log_value)
                # plot_attention_weights(attention_profiles)

            return wildtype_attention_profiles, sequence

def output_wildtype_enzyme(wildtype_attention_profiles, sequence) :
    sequence_length = len(sequence)
    attention_weights_length = len(wildtype_attention_profiles)

    print('The length of wildtype enzyme:', sequence_length)
    print('The length of attention weights:', attention_weights_length)
    print(sequence)
    print(wildtype_attention_profiles)

    with open('../../Results/output/supple_wildtype_PNP_attention_weights.tsv', 'w') as outfile :
        i = 0
        items = ['Sequence position', 'Amino acid', 'Attention weight']
        outfile.write('\t'.join(items) + '\n')
        for attention in wildtype_attention_profiles :
            i += 1
            line = [str(i), sequence[i-1], attention]
            outfile.write('\t'.join(line) + '\n')

def wildtype_like_decreased_info() :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    wildtype_mutant_entries = extract_wildtype_mutant()

    fingerprint_dict = subsequence_model.load_pickle('../../Data/input/fingerprint_dict.pickle')
    atom_dict = subsequence_model.load_pickle('../../Data/input/atom_dict.pickle')
    bond_dict = subsequence_model.load_pickle('../../Data/input/bond_dict.pickle')
    word_dict = subsequence_model.load_pickle('../../Data/input/sequence_dict.pickle')
    n_fingerprint = len(fingerprint_dict)
    n_word = len(word_dict)
    # print(n_fingerprint)  # 3958
    # print(n_word)  # 8542

    radius=2
    ngram=3
    # n_fingerprint = 3958
    # n_word = 8542

    dim=10
    layer_gnn=3
    side=5
    window=11
    layer_cnn=3
    layer_output=3
    lr=1e-3
    lr_decay=0.5
    decay_interval=10
    weight_decay=1e-6
    iteration=100

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # torch.manual_seed(1234)
    Kcat_model = subsequence_model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
    Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
    # print(state_dict.keys())
    # subsequence_model.eval()
    predictor = Predictor(Kcat_model)

    print('It\'s time to start the prediction!')
    print('-----------------------------------')

    i = 0
    alldata = dict()
    alldata['type'] = list()
    alldata['entry'] = list()
    alldata['weights'] = list()


    for wildtype_mutant_entry in wildtype_mutant_entries :
        entry_names = wildtype_mutant_entry[0].split('&')
        # print('This entry is:', entry_names)
        # print('The total amount of wildtype and variant enzymes in the entry is:', wildtype_mutant_entry[1])

        experimental_values = list()
        predicted_values = list()
        wildtype_like = list()
        wildtype_decreased = list()
        wildtype_like_positions = list()
        wildtype_decreased_positions = list()

        if entry_names[0] == 'Inosine' :
            print('This entry is:', entry_names)
            for data in Kcat_data :
                # print(data)
                # print(data['Substrate'])
                substrate = data['Substrate']
                organism = data['Organism']
                EC = data['ECNumber']
                entry = substrate + '&' + organism + '&' + EC

                if entry == wildtype_mutant_entry[0] :
                    wildtype_kcat = extract_wildtype_kcat(entry)
                    wildtype_sequence = extract_wildtype_sequence(entry)
                    wildtype_attention_profiles =extract_wildtype_attention(entry)[0]
                    # print(len(wildtype_attention_profiles))
                    # print(wildtype_attention_profiles)
                    # print('wildtype kcat:', wildtype_kcat)
                    # print(data)
                    # if wildtype_kcat :
                    i += 1
                    # print('This is', i, '---------------------------------------')
                    smiles = data['Smiles']
                    sequence = data['Sequence']
                    enzyme_type = data['Type']
                    Kcat = data['Value']
                    if "." not in smiles and float(Kcat) > 0:
                        # i += 1
                        # print('This is',i)

                        mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
                        atoms = create_atoms(mol)
                        # print(atoms)
                        i_jbond_dict = create_ijbonddict(mol)
                        # print(i_jbond_dict)

                        fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
                        # print(fingerprints)
                        # compounds.append(fingerprints)

                        adjacency = create_adjacency(mol)
                        # print(adjacency)
                        # adjacencies.append(adjacency)

                        words = split_sequence(sequence,ngram)
                        # print(words)
                        # proteins.append(words)

                        fingerprints = torch.LongTensor(fingerprints)
                        adjacency = torch.FloatTensor(adjacency)
                        words = torch.LongTensor(words)

                        inputs = [fingerprints, adjacency, words]

                        value = float(data['Value'])
                        # print('Current kcat value:', value)
                        normalized_value = value/wildtype_kcat
                        # print('%.2f' % normalized_value)
                        # print(type(value))
                        # print(type(normalized_value))
                        experimental_values.append(math.log10(value))

                        prediction, attention_profiles = predictor.predict(inputs)

                        # different_attentions = compare_list(attention_profiles, wildtype_attention_profiles)
                        # different_weights = compare_list(attention_profiles, wildtype_attention_profiles)
                        different_positions = compare_mutant_wildtype_sequence(sequence, wildtype_sequence)

                        entry_name = entry_names[0]
                        if normalized_value >= 0.5 and normalized_value < 2.0 :
                            # for weight in different_weights :
                            for position in different_positions :
                                wildtype_like_positions.append(position+1)
                                wildtype_like.append(float(wildtype_attention_profiles[position]))
                                alldata['type'].append('Wildtype_like')
                                alldata['entry'].append(entry_name)
                                alldata['weights'].append(float(wildtype_attention_profiles[position]))

                        if normalized_value < 0.5 :
                            # for weight in different_weights :
                            for position in different_positions :
                                wildtype_decreased_positions.append(position+1)
                                wildtype_decreased.append(float(wildtype_attention_profiles[position]))
                                alldata['type'].append('Wildtype_decreased')
                                alldata['entry'].append(entry_name)
                                alldata['weights'].append(float(wildtype_attention_profiles[position]))

            print('wildtype_like_positions:', wildtype_like_positions)
            print('wildtype_decreased_positions:', wildtype_decreased_positions)
            # print(set(wildtype_decreased_positions))
            # print(len(wildtype_like_positions))
            # print(len(wildtype_decreased_positions))
            print('Attention weights in wildtype_like:', wildtype_like)
            print('Attention weights in wildtype_decreased:', wildtype_decreased)
            # print(set(wildtype_decreased))

            return wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased

def main() :
    substrate, organism, EC = ('Inosine', 'Homo sapiens', '2.4.2.1') 
    entry = substrate + '&' + organism + '&' + EC
    wildtype_attentions, sequence = extract_wildtype_attention(entry)
    # output_wildtype_enzyme(wildtype_attentions, sequence)
    wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased = wildtype_like_decreased_info()
    plot_attention_weights(wildtype_attentions, wildtype_like_positions, wildtype_decreased_positions, wildtype_like, wildtype_decreased)


if __name__ == '__main__' :
    main()