File size: 13,319 Bytes
2d12bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#!/usr/bin/python
# coding: utf-8

# Author: LE YUAN
# Date: 2020-10-01

import os
import math
import model
import torch
import json
import pickle
import numpy as np
from rdkit import Chem
from Bio import SeqIO
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib import rc
from scipy.stats import gaussian_kde
from scipy import stats
import seaborn as sns
import pandas as pd
from sklearn.metrics import mean_squared_error,r2_score


fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
edge_dict = model.load_pickle('../../Data/input/edge_dict.pickle')
word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')

def split_sequence(sequence, ngram):
    sequence = '-' + sequence + '='
    # print(sequence)
    # words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]

    words = list()
    for i in range(len(sequence)-ngram+1) :
        try :
            words.append(word_dict[sequence[i:i+ngram]])
        except :
            word_dict[sequence[i:i+ngram]] = 0
            words.append(word_dict[sequence[i:i+ngram]])

    return np.array(words)
    # return word_dict

def create_atoms(mol):
    """Create a list of atom (e.g., hydrogen and oxygen) IDs
    considering the aromaticity."""
    # atom_dict = defaultdict(lambda: len(atom_dict))
    atoms = [a.GetSymbol() for a in mol.GetAtoms()]
    # print(atoms)
    for a in mol.GetAromaticAtoms():
        i = a.GetIdx()
        atoms[i] = (atoms[i], 'aromatic')
    atoms = [atom_dict[a] for a in atoms]
    # atoms = list()
    # for a in atoms :
    #     try: 
    #         atoms.append(atom_dict[a])
    #     except :
    #         atom_dict[a] = 0
    #         atoms.append(atom_dict[a])

    return np.array(atoms)

def create_ijbonddict(mol):
    """Create a dictionary, which each key is a node ID
    and each value is the tuples of its neighboring node
    and bond (e.g., single and double) IDs."""
    # bond_dict = defaultdict(lambda: len(bond_dict))
    i_jbond_dict = defaultdict(lambda: [])
    for b in mol.GetBonds():
        i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
        bond = bond_dict[str(b.GetBondType())]
        i_jbond_dict[i].append((j, bond))
        i_jbond_dict[j].append((i, bond))
    return i_jbond_dict

# def create_ijbonddict(mol):
#     """Create a dictionary, which each key is a node ID
#     and each value is the tuples of its neighboring node
#     and bond (e.g., single and double) IDs."""
#     # bond_dict = defaultdict(lambda: len(bond_dict))
#     i_jbond_dict = defaultdict(lambda: [])
#     for b in mol.GetBonds():
#         i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
#         print(str(b.GetBondType()))
#         bond = bond_dict[str(b.GetBondType())]
#         print(bond)
#         # bond = bond_dict.get(str(b.GetBondType()))
#         # try :
#         #     bond = bond_dict[str(b.GetBondType())]
#         # except :
#         #     bond_dict[str(b.GetBondType())] = 0
#         #     bond = bond_dict[str(b.GetBondType())]

#         i_jbond_dict[i].append((j, bond))
#         i_jbond_dict[j].append((i, bond))
#     return i_jbond_dict

def extract_fingerprints(atoms, i_jbond_dict, radius):
    """Extract the r-radius subgraphs (i.e., fingerprints)
    from a molecular graph using Weisfeiler-Lehman algorithm."""

    # fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
    # edge_dict = defaultdict(lambda: len(edge_dict))

    if (len(atoms) == 1) or (radius == 0):
        fingerprints = [fingerprint_dict[a] for a in atoms]

    else:
        nodes = atoms
        i_jedge_dict = i_jbond_dict

        for _ in range(radius):

            """Update each node ID considering its neighboring nodes and edges
            (i.e., r-radius subgraphs or fingerprints)."""
            fingerprints = []
            for i, j_edge in i_jedge_dict.items():
                neighbors = [(nodes[j], edge) for j, edge in j_edge]
                fingerprint = (nodes[i], tuple(sorted(neighbors)))
                # fingerprints.append(fingerprint_dict[fingerprint])
                # fingerprints.append(fingerprint_dict.get(fingerprint))
                try :
                    fingerprints.append(fingerprint_dict[fingerprint])
                except :
                    fingerprint_dict[fingerprint] = 0
                    fingerprints.append(fingerprint_dict[fingerprint])

            nodes = fingerprints

            """Also update each edge ID considering two nodes
            on its both sides."""
            _i_jedge_dict = defaultdict(lambda: [])
            for i, j_edge in i_jedge_dict.items():
                for j, edge in j_edge:
                    both_side = tuple(sorted((nodes[i], nodes[j])))
                    # edge = edge_dict[(both_side, edge)]
                    # edge = edge_dict.get((both_side, edge))
                    try :
                        edge = edge_dict[(both_side, edge)]
                    except :
                        edge_dict[(both_side, edge)] = 0
                        edge = edge_dict[(both_side, edge)]

                    _i_jedge_dict[i].append((j, edge))
            i_jedge_dict = _i_jedge_dict

    return np.array(fingerprints)

def create_adjacency(mol):
    adjacency = Chem.GetAdjacencyMatrix(mol)
    return np.array(adjacency)

def dump_dictionary(dictionary, filename):
    with open(filename, 'wb') as file:
        pickle.dump(dict(dictionary), file)

def load_tensor(file_name, dtype):
    return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]

class Predictor(object):
    def __init__(self, model):
        self.model = model

    def predict(self, data):
        predicted_value = self.model.forward(data)

        return predicted_value

def main() :
    with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
        Kcat_data = json.load(infile)

    # with open('../species/Saccharomyces_cerevisiaeForKcatPrediction2.txt', 'r') as infile :
    #     lines = infile.readlines()[1:]

    # print(len(lines))  # 6291
    # # print(lines[1])

    # # proteinSeq = get_refSeq()

    fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
    atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
    bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
    word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')
    n_fingerprint = len(fingerprint_dict)
    n_word = len(word_dict)
    print(n_fingerprint)  # 3958
    print(n_word)  # 8542

    radius=2
    ngram=3
    # n_fingerprint = 3958
    # n_word = 8542

    dim=10
    layer_gnn=3
    side=5
    window=11
    layer_cnn=3
    layer_output=3
    lr=1e-3
    lr_decay=0.5
    decay_interval=10
    weight_decay=1e-6
    iteration=100

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # torch.manual_seed(1234)
    Kcat_model = model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
    Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
    # print(state_dict.keys())
    # model.eval()
    predictor = Predictor(Kcat_model)

    print('It\'s time to start the prediction!')
    print('-----------------------------------')

    # prediction = predictor.predict(inputs)

    i = 0
    # x = list()
    # y = list()
    experimental_values = list()
    predicted_values = list()

    number = 0
    for data in Kcat_data :
        # print(data)
        # print(data['Substrate'])
        if data['Type'] == 'mutant' :
            # print(data)
            i += 1
            print('This is', i, '---------------------------------------')
            smiles = data['Smiles']
            sequence = data['Sequence']
            print(smiles)
            Kcat = data['Value']
            if "." not in smiles and float(Kcat) > 0:
                number += 1

                mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
                atoms = create_atoms(mol)
                # print(atoms)
                i_jbond_dict = create_ijbonddict(mol)
                # print(i_jbond_dict)

                fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
                # print(fingerprints)
                # compounds.append(fingerprints)

                adjacency = create_adjacency(mol)
                # print(adjacency)
                # adjacencies.append(adjacency)

                words = split_sequence(sequence,ngram)
                # print(words)
                # proteins.append(words)

                fingerprints = torch.LongTensor(fingerprints)
                adjacency = torch.FloatTensor(adjacency)
                words = torch.LongTensor(words)

                inputs = [fingerprints, adjacency, words]

                value = float(data['Value'])
                print(value)
                print(type(value))
                # y1.append(value)
                experimental_values.append(math.log10(value))

                prediction = predictor.predict(inputs)
                Kcat_log_value = prediction.item()
                Kcat_value = math.pow(2,Kcat_log_value)
                print(Kcat_value)
                print(type(Kcat_value))
                # x1.append(Kcat_value)
                predicted_values.append(math.log10(Kcat_value))

    # correlation, p_value = stats.pearsonr(x, y)
    correlation1, p_value1 = stats.pearsonr(experimental_values, predicted_values)

    # https://blog.csdn.net/u012735708/article/details/84337262?utm_medium=distribute.pc_relevant.none-
    # task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache&depth_1-utm_source=
    # distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache
    r2 = r2_score(experimental_values,predicted_values)
    rmse = np.sqrt(mean_squared_error(experimental_values,predicted_values))
    print("---------------------")
    print('\n\n')
    # print(correlation)
    print('The data point number is: %s' % number)
    print(correlation1)
    print(p_value1)
    print('R2 is', r2)
    print('RMSE is', rmse)

    # Results:
    # The data point number is: 7427
    # 0.8970561077126646
    # 0.0
    # R2 is 0.8031064639769758
    # RMSE is 0.6683890205006177


    allData = pd.DataFrame(list(zip(experimental_values,predicted_values)))
    allData.columns = ['Experimental value', 'Predicted value']

    plt.figure(figsize=(1.5,1.5))

    # To solve the 'Helvetica' font cannot be used in PDF file
    # https://stackoverflow.com/questions/59845568/the-pdf-backend-does-not-currently-support-the-selected-font
    # rc('text', usetex=True) 
    rc('font',**{'family':'serif','serif':['Helvetica']})
    plt.rcParams['pdf.fonttype'] = 42
    # plt.rc('text', usetex=True)

    plt.axes([0.12,0.12,0.83,0.83])

    plt.tick_params(direction='in')
    plt.tick_params(which='major',length=1.5)
    plt.tick_params(which='major',width=0.4)

    # http://showteeth.tech/posts/24328.html
    # https://stackoverflow.com/questions/49662964/density-scatter-plot-for-huge-dataset-in-matplotlib
    kcat_values_vstack = np.vstack([experimental_values,predicted_values])
    experimental_predicted = gaussian_kde(kcat_values_vstack)(kcat_values_vstack)

    # plt.scatter(data = allData, x = 'Predicted value', y = 'Experimental value')
    # sns.regplot(data = allData, x = 'Experimental value', y = 'Predicted value', color='#2166ac', scatter_kws={"s": 1})
    ax = plt.scatter(x = experimental_values, y = predicted_values, c=experimental_predicted, s=3, edgecolor=[])

    # https://stackoverflow.com/questions/53935805/specify-range-of-colors-for-density-plot-in-matplotlib
    cbar = plt.colorbar(ax)
    cbar.ax.tick_params(labelsize=6)
    cbar.set_label('Density', size=7)

    plt.text(-6.7, 6.0, 'r = 0.90', fontweight ="normal", fontsize=6)
    plt.text(-6.7, 5.0, 'P value = 0', fontweight ="normal", fontsize=6)
    plt.text(-6.7, 3.9, 'N = 7,427', fontweight ="normal", fontsize=6)

    plt.text(2, -6, 'Mutant', fontweight ="normal", fontsize=6)

    plt.rcParams['font.family'] = 'Helvetica'

    plt.xlabel("Experimental $k$$_\mathregular{cat}$ value", fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7}, fontsize=7)
    plt.ylabel('Predicted $k$$_\mathregular{cat}$ value',fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7},fontsize=7)

    plt.xticks([-8, -6, -4, -2, 0, 2, 4, 6, 8])
    plt.yticks([-8, -6, -4, -2, 0, 2, 4, 6, 8])

    plt.xticks(fontsize=6)
    plt.yticks(fontsize=6)

    # plt.rcParams['text.usetex'] = True

    ax = plt.gca()
    ax.spines['bottom'].set_linewidth(0.5)
    ax.spines['left'].set_linewidth(0.5)
    ax.spines['top'].set_linewidth(0.5)
    ax.spines['right'].set_linewidth(0.5)

    plt.savefig("../../Results/figures/Fig3b.pdf", dpi=400, bbox_inches='tight')


if __name__ == '__main__' :
    main()