File size: 13,319 Bytes
2d12bc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
#!/usr/bin/python
# coding: utf-8
# Author: LE YUAN
# Date: 2020-10-01
import os
import math
import model
import torch
import json
import pickle
import numpy as np
from rdkit import Chem
from Bio import SeqIO
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib import rc
from scipy.stats import gaussian_kde
from scipy import stats
import seaborn as sns
import pandas as pd
from sklearn.metrics import mean_squared_error,r2_score
fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
edge_dict = model.load_pickle('../../Data/input/edge_dict.pickle')
word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')
def split_sequence(sequence, ngram):
sequence = '-' + sequence + '='
# print(sequence)
# words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]
words = list()
for i in range(len(sequence)-ngram+1) :
try :
words.append(word_dict[sequence[i:i+ngram]])
except :
word_dict[sequence[i:i+ngram]] = 0
words.append(word_dict[sequence[i:i+ngram]])
return np.array(words)
# return word_dict
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# atom_dict = defaultdict(lambda: len(atom_dict))
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
# print(atoms)
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
atoms = [atom_dict[a] for a in atoms]
# atoms = list()
# for a in atoms :
# try:
# atoms.append(atom_dict[a])
# except :
# atom_dict[a] = 0
# atoms.append(atom_dict[a])
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
# bond_dict = defaultdict(lambda: len(bond_dict))
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
# def create_ijbonddict(mol):
# """Create a dictionary, which each key is a node ID
# and each value is the tuples of its neighboring node
# and bond (e.g., single and double) IDs."""
# # bond_dict = defaultdict(lambda: len(bond_dict))
# i_jbond_dict = defaultdict(lambda: [])
# for b in mol.GetBonds():
# i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
# print(str(b.GetBondType()))
# bond = bond_dict[str(b.GetBondType())]
# print(bond)
# # bond = bond_dict.get(str(b.GetBondType()))
# # try :
# # bond = bond_dict[str(b.GetBondType())]
# # except :
# # bond_dict[str(b.GetBondType())] = 0
# # bond = bond_dict[str(b.GetBondType())]
# i_jbond_dict[i].append((j, bond))
# i_jbond_dict[j].append((i, bond))
# return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
# fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
# edge_dict = defaultdict(lambda: len(edge_dict))
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
# fingerprints.append(fingerprint_dict[fingerprint])
# fingerprints.append(fingerprint_dict.get(fingerprint))
try :
fingerprints.append(fingerprint_dict[fingerprint])
except :
fingerprint_dict[fingerprint] = 0
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
# edge = edge_dict[(both_side, edge)]
# edge = edge_dict.get((both_side, edge))
try :
edge = edge_dict[(both_side, edge)]
except :
edge_dict[(both_side, edge)] = 0
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)
def create_adjacency(mol):
adjacency = Chem.GetAdjacencyMatrix(mol)
return np.array(adjacency)
def dump_dictionary(dictionary, filename):
with open(filename, 'wb') as file:
pickle.dump(dict(dictionary), file)
def load_tensor(file_name, dtype):
return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]
class Predictor(object):
def __init__(self, model):
self.model = model
def predict(self, data):
predicted_value = self.model.forward(data)
return predicted_value
def main() :
with open('../../Data/database/Kcat_combination_0918_wildtype_mutant.json', 'r') as infile :
Kcat_data = json.load(infile)
# with open('../species/Saccharomyces_cerevisiaeForKcatPrediction2.txt', 'r') as infile :
# lines = infile.readlines()[1:]
# print(len(lines)) # 6291
# # print(lines[1])
# # proteinSeq = get_refSeq()
fingerprint_dict = model.load_pickle('../../Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('../../Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('../../Data/input/bond_dict.pickle')
word_dict = model.load_pickle('../../Data/input/sequence_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict)
print(n_fingerprint) # 3958
print(n_word) # 8542
radius=2
ngram=3
# n_fingerprint = 3958
# n_word = 8542
dim=10
layer_gnn=3
side=5
window=11
layer_cnn=3
layer_output=3
lr=1e-3
lr_decay=0.5
decay_interval=10
weight_decay=1e-6
iteration=100
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# torch.manual_seed(1234)
Kcat_model = model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
Kcat_model.load_state_dict(torch.load('../../Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
# print(state_dict.keys())
# model.eval()
predictor = Predictor(Kcat_model)
print('It\'s time to start the prediction!')
print('-----------------------------------')
# prediction = predictor.predict(inputs)
i = 0
# x = list()
# y = list()
experimental_values = list()
predicted_values = list()
number = 0
for data in Kcat_data :
# print(data)
# print(data['Substrate'])
if data['Type'] == 'mutant' :
# print(data)
i += 1
print('This is', i, '---------------------------------------')
smiles = data['Smiles']
sequence = data['Sequence']
print(smiles)
Kcat = data['Value']
if "." not in smiles and float(Kcat) > 0:
number += 1
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
# print(atoms)
i_jbond_dict = create_ijbonddict(mol)
# print(i_jbond_dict)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
# print(fingerprints)
# compounds.append(fingerprints)
adjacency = create_adjacency(mol)
# print(adjacency)
# adjacencies.append(adjacency)
words = split_sequence(sequence,ngram)
# print(words)
# proteins.append(words)
fingerprints = torch.LongTensor(fingerprints)
adjacency = torch.FloatTensor(adjacency)
words = torch.LongTensor(words)
inputs = [fingerprints, adjacency, words]
value = float(data['Value'])
print(value)
print(type(value))
# y1.append(value)
experimental_values.append(math.log10(value))
prediction = predictor.predict(inputs)
Kcat_log_value = prediction.item()
Kcat_value = math.pow(2,Kcat_log_value)
print(Kcat_value)
print(type(Kcat_value))
# x1.append(Kcat_value)
predicted_values.append(math.log10(Kcat_value))
# correlation, p_value = stats.pearsonr(x, y)
correlation1, p_value1 = stats.pearsonr(experimental_values, predicted_values)
# https://blog.csdn.net/u012735708/article/details/84337262?utm_medium=distribute.pc_relevant.none-
# task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache&depth_1-utm_source=
# distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.pc_relevant_is_cache
r2 = r2_score(experimental_values,predicted_values)
rmse = np.sqrt(mean_squared_error(experimental_values,predicted_values))
print("---------------------")
print('\n\n')
# print(correlation)
print('The data point number is: %s' % number)
print(correlation1)
print(p_value1)
print('R2 is', r2)
print('RMSE is', rmse)
# Results:
# The data point number is: 7427
# 0.8970561077126646
# 0.0
# R2 is 0.8031064639769758
# RMSE is 0.6683890205006177
allData = pd.DataFrame(list(zip(experimental_values,predicted_values)))
allData.columns = ['Experimental value', 'Predicted value']
plt.figure(figsize=(1.5,1.5))
# To solve the 'Helvetica' font cannot be used in PDF file
# https://stackoverflow.com/questions/59845568/the-pdf-backend-does-not-currently-support-the-selected-font
# rc('text', usetex=True)
rc('font',**{'family':'serif','serif':['Helvetica']})
plt.rcParams['pdf.fonttype'] = 42
# plt.rc('text', usetex=True)
plt.axes([0.12,0.12,0.83,0.83])
plt.tick_params(direction='in')
plt.tick_params(which='major',length=1.5)
plt.tick_params(which='major',width=0.4)
# http://showteeth.tech/posts/24328.html
# https://stackoverflow.com/questions/49662964/density-scatter-plot-for-huge-dataset-in-matplotlib
kcat_values_vstack = np.vstack([experimental_values,predicted_values])
experimental_predicted = gaussian_kde(kcat_values_vstack)(kcat_values_vstack)
# plt.scatter(data = allData, x = 'Predicted value', y = 'Experimental value')
# sns.regplot(data = allData, x = 'Experimental value', y = 'Predicted value', color='#2166ac', scatter_kws={"s": 1})
ax = plt.scatter(x = experimental_values, y = predicted_values, c=experimental_predicted, s=3, edgecolor=[])
# https://stackoverflow.com/questions/53935805/specify-range-of-colors-for-density-plot-in-matplotlib
cbar = plt.colorbar(ax)
cbar.ax.tick_params(labelsize=6)
cbar.set_label('Density', size=7)
plt.text(-6.7, 6.0, 'r = 0.90', fontweight ="normal", fontsize=6)
plt.text(-6.7, 5.0, 'P value = 0', fontweight ="normal", fontsize=6)
plt.text(-6.7, 3.9, 'N = 7,427', fontweight ="normal", fontsize=6)
plt.text(2, -6, 'Mutant', fontweight ="normal", fontsize=6)
plt.rcParams['font.family'] = 'Helvetica'
plt.xlabel("Experimental $k$$_\mathregular{cat}$ value", fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7}, fontsize=7)
plt.ylabel('Predicted $k$$_\mathregular{cat}$ value',fontdict={'weight': 'normal', 'fontname': 'Helvetica', 'size': 7},fontsize=7)
plt.xticks([-8, -6, -4, -2, 0, 2, 4, 6, 8])
plt.yticks([-8, -6, -4, -2, 0, 2, 4, 6, 8])
plt.xticks(fontsize=6)
plt.yticks(fontsize=6)
# plt.rcParams['text.usetex'] = True
ax = plt.gca()
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left'].set_linewidth(0.5)
ax.spines['top'].set_linewidth(0.5)
ax.spines['right'].set_linewidth(0.5)
plt.savefig("../../Results/figures/Fig3b.pdf", dpi=400, bbox_inches='tight')
if __name__ == '__main__' :
main()
|