import json import os import pandas as pd import torch import yaml from embeddings import compute_embeddings, load_model # Load configurations with open("configs.yaml", "r") as file: configs = yaml.safe_load(file) # Load and process the movie dataset movies_data = pd.read_csv(configs['dataset']) # Define columns to drop that are not needed columns_drop = ['budget', 'homepage', 'id', 'original_language', 'original_title', 'popularity', 'revenue', 'spoken_languages', 'status', 'tagline'] movies_data.drop(columns=columns_drop, axis=1, inplace=True) movies_data.dropna(inplace=True) # Drop rows with missing values # Convert JSON string columns to a comma-separated string of names columns_json_to_csv = ['genres', 'keywords', 'production_companies', 'production_countries'] for col in columns_json_to_csv: movies_data[col] = movies_data[col].apply( lambda json_str: ', '.join([item["name"] for item in json.loads(json_str)]) ) # Extract the year from 'release_date' movies_data['release_date'] = pd.to_datetime(movies_data['release_date']).dt.year # Convert 'runtime' to integers movies_data['runtime'] = movies_data['runtime'].astype(int) # Combine 'overview', 'genres', and 'keywords' into a single string for each movie movies_data_processed = movies_data[['overview', 'genres', 'keywords']].apply( lambda row: '. '.join([f"{col.capitalize()}: {val}" for col, val in row.items()]), axis=1 ).tolist() # Save the processed dataset movies_data.to_csv(configs['processed_dataset'], index=False) # Process embeddings for each model for model_name in configs['hf_models']: model, tokenizer = load_model(model_name) movie_embeddings = compute_embeddings(movies_data_processed, model, tokenizer) embedding_dir_path = f"{configs['movie_embeddings']}/{model_name}" embedding_file_path = f"{embedding_dir_path}/{configs['movie_embeddings']}.pt" os.makedirs(embedding_dir_path, exist_ok=True) torch.save(movie_embeddings, embedding_file_path) print(f"Saved embeddings for {model_name}")