Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
import json | |
from gensim.models import Word2Vec | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import squarify | |
import numpy as np | |
# Define the HTML and CSS styles | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-color: #EBF5FB; | |
# color: #ffffff; | |
} | |
.stApp { | |
background-color: #EBF5FB; | |
# color: #ffffff; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.header("Word2Vec App for Clotting Pubmed Database.") | |
text_input_value = st.text_input("Enter one term to search within the Clotting database") | |
query = text_input_value | |
query = query.lower() | |
# query = input ("Enter your keyword(s):") | |
if query: | |
bar = st.progress(0) | |
time.sleep(.2) | |
st.caption(":LightSkyBlue[searching 40123 PubMed abstracts]") | |
for i in range(10): | |
bar.progress((i+1)*10) | |
time.sleep(.1) | |
model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model! | |
words = list(model.wv.key_to_index) | |
X = model.wv[model.wv.key_to_index] | |
model2 = model.wv[query] | |
df = pd.DataFrame(X) | |
# def findRelationships(query, df): | |
table = model.wv.most_similar_cosmul(query, topn=10000) | |
table = (pd.DataFrame(table)) | |
table.index.name = 'Rank' | |
table.columns = ['Word', 'SIMILARITY'] | |
print() | |
print("Similarity to " + str(query)) | |
pd.set_option('display.max_rows', None) | |
print(table.head(50)) | |
# table.head(10).to_csv("clotting_sim1.csv", index=True) | |
# short_table = table.head(50) | |
# print(table) | |
st.subheader(f"Similar Words to {query}") | |
# calculate the sizes of the squares in the treemap | |
short_table = table.head(10) | |
short_table.index += 1 | |
short_table.index = 1 / short_table.index | |
sizes = short_table.index.tolist() | |
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes))) | |
color = [cmap[i] for i in range(len(sizes))] | |
short_table.set_index('Word', inplace=True) | |
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB", text_kwargs={'fontsize': 10}) | |
# # plot the treemap using matplotlib | |
plt.axis('off') | |
fig = plt.gcf() | |
fig.patch.set_facecolor('#EBF5FB') | |
# # display the treemap in Streamlit | |
st.pyplot(fig) | |
plt.clf() | |
csv = table.head(100).to_csv().encode('utf-8') | |
st.download_button( | |
label="download top 100 words (csv)", | |
data=csv, | |
file_name='clotting_words.csv', | |
mime='text/csv') | |
# st.write(short_table) | |
# | |
print() | |
print("Human genes similar to " + str(query)) | |
df1 = table | |
df2 = pd.read_csv('Human_Genes.csv') | |
m = df1.Word.isin(df2.symbol) | |
df1 = df1[m] | |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True) | |
df1["Human Gene"] = df1["Human Gene"].str.upper() | |
print(df1.head(50)) | |
print() | |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False) | |
# time.sleep(2) | |
st.subheader(f"Similar Genes to {query}") | |
df10 = df1.head(10) | |
df10.index = 1/df10.index | |
sizes = df10.index.tolist() | |
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes))) | |
color2 = [cmap2[i] for i in range(len(sizes))] | |
df10.set_index('Human Gene', inplace=True) | |
squarify.plot(sizes=sizes, label=df1.index.tolist(), color=color2, edgecolor="#EBF5FB", text_kwargs={'fontsize': 12}) | |
# | |
# # plot the treemap using matplotlib | |
plt.axis('off') | |
fig2 = plt.gcf() | |
fig2.patch.set_facecolor('#EBF5FB') | |
# plt.show() | |
# | |
# # display the treemap in Streamlit | |
st.pyplot(fig2) | |
csv = df1.head(100).to_csv().encode('utf-8') | |
st.download_button( | |
label="download top 100 genes (csv)", | |
data=csv, | |
file_name='clotting_genes.csv', | |
mime='text/csv') | |
# findRelationships(query, df) | |
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True) | |
# similar_words = model.most_similar(word) | |
# output = json.dumps({"word": word, "similar_words": similar_words}) | |
# st.write(output) | |