jesusvilela commited on
Commit
1bc2237
·
verified ·
1 Parent(s): 2fe1dc8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -563
app.py CHANGED
@@ -1,415 +1,25 @@
1
- # Copyright 2025 Jesus Vilela Jato.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # --- Imports ---
16
- import os
17
- import gradio as gr
18
- import requests
19
- import pandas as pd
20
- import json
21
- import logging
22
- from typing import Optional, List, Dict, Any, Tuple, Union, Type, TYPE_CHECKING, Annotated
23
- import hashlib
24
- from urllib.parse import urlparse
25
- import mimetypes
26
- import subprocess # For yt-dlp
27
- import io # For BytesIO with PIL
28
-
29
- # --- Global Variables for Startup Status ---
30
- missing_vars_startup_list_global = []
31
- agent_pre_init_status_msg_global = "Agent status will be determined at startup."
32
-
33
- # File Processing Libs
34
- try: from PyPDF2 import PdfReader; PYPDF2_AVAILABLE = True
35
- except ImportError: PYPDF2_AVAILABLE = False; print("WARNING: PyPDF2 not found, PDF tool will be disabled.")
36
- try: from PIL import Image; import pytesseract; PIL_TESSERACT_AVAILABLE = True
37
- except ImportError: PIL_TESSERACT_AVAILABLE = False; print("WARNING: Pillow or Pytesseract not found, OCR tool will be disabled.")
38
- try: import whisper; WHISPER_AVAILABLE = True
39
- except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
40
-
41
- # --- google-genai SDK (Unified SDK) ---
42
- from google import genai as google_genai_sdk # Alias for clarity
43
- from google.genai.types import HarmCategory, HarmBlockThreshold # ***** CORRECTED IMPORT *****
44
- # For FileState enum later
45
- from google.ai import generativelanguage as glm
46
- # --- End google-genai SDK ---
47
-
48
-
49
- # LangChain
50
- from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
51
- from langchain.prompts import PromptTemplate
52
- from langchain.tools import BaseTool, tool as lc_tool_decorator
53
- from langchain_google_genai import ChatGoogleGenerativeAI
54
- from langchain.agents import AgentExecutor, create_react_agent
55
- from langchain_community.tools import DuckDuckGoSearchRun
56
- from langchain_experimental.tools import PythonREPLTool
57
-
58
- # LangGraph Conditional Imports
59
- if TYPE_CHECKING:
60
- from langgraph.graph import StateGraph as StateGraphAliasedForHinting
61
- from langgraph.prebuilt import ToolNode as ToolExecutorAliasedForHinting
62
- from typing_extensions import TypedDict
63
- from langgraph.checkpoint.base import BaseCheckpointSaver
64
-
65
- LANGGRAPH_FLAVOR_AVAILABLE = False
66
- LG_StateGraph: Optional[Type[Any]] = None
67
- LG_ToolExecutor_Class: Optional[Type[Any]] = None
68
- LG_END: Optional[Any] = None
69
- LG_ToolInvocation: Optional[Type[Any]] = None
70
- add_messages: Optional[Any] = None
71
- MemorySaver_Class: Optional[Type[Any]] = None
72
-
73
- AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
74
- TOOLS: List[BaseTool] = []
75
- LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
76
- LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
77
-
78
- google_genai_client: Optional[google_genai_sdk.Client] = None # For direct SDK calls
79
-
80
- try:
81
- from langgraph.graph import StateGraph, END
82
- try:
83
- from langgraph.prebuilt import ToolNode
84
- LG_ToolExecutor_Class = ToolNode
85
- print("Using langgraph.prebuilt.ToolNode for LangGraph tool execution.")
86
- except ImportError:
87
- try:
88
- from langgraph.prebuilt import ToolExecutor
89
- LG_ToolExecutor_Class = ToolExecutor
90
- print("Using langgraph.prebuilt.ToolExecutor (fallback) for LangGraph tool execution.")
91
- except ImportError as e_lg_exec_inner:
92
- print(f"Failed to import ToolNode and ToolExecutor from langgraph.prebuilt: {e_lg_exec_inner}")
93
- LG_ToolExecutor_Class = None
94
-
95
- if LG_ToolExecutor_Class is not None:
96
- from langgraph.prebuilt import ToolInvocation as LGToolInvocationActual
97
- from langgraph.graph.message import add_messages as lg_add_messages
98
- from langgraph.checkpoint.memory import MemorySaver as LGMemorySaver
99
- LANGGRAPH_FLAVOR_AVAILABLE = True
100
- LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = \
101
- StateGraph, END, LGToolInvocationActual, lg_add_messages, LGMemorySaver
102
- print("Successfully imported LangGraph components.")
103
- else:
104
- LANGGRAPH_FLAVOR_AVAILABLE = False
105
- LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 5
106
- print(f"WARNING: No suitable LangGraph tool executor (ToolNode/ToolExecutor) found. LangGraph agent will be disabled.")
107
-
108
- except ImportError as e: # Catch import error for StateGraph, END itself
109
- LANGGRAPH_FLAVOR_AVAILABLE = False
110
- LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 6
111
- print(f"WARNING: Core LangGraph components (StateGraph, END) not found or import error: {e}. LangGraph agent will be disabled.")
112
-
113
-
114
- # --- Constants ---
115
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
116
- GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-05-06"
117
- GEMINI_FLASH_MULTIMODAL_MODEL_NAME = "gemini-2.0-flash-exp"
118
- SCORING_API_BASE_URL = os.getenv("SCORING_API_URL", DEFAULT_API_URL)
119
- MAX_FILE_SIZE_BYTES = 50 * 1024 * 1024
120
- LOCAL_FILE_STORE_PATH = "./Data"
121
- os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
122
-
123
- # --- Global State ---
124
- WHISPER_MODEL: Optional[Any] = None
125
-
126
- # --- Environment Variables & API Keys ---
127
- GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
128
- HUGGINGFACE_TOKEN = os.environ.get("HF_TOKEN")
129
-
130
- # --- Setup Logging ---
131
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(name)s - %(module)s:%(lineno)d - %(message)s')
132
- logger = logging.getLogger(__name__)
133
-
134
- # --- Initialize google-genai Client SDK ---
135
- if GOOGLE_API_KEY:
136
- try:
137
- google_genai_client = google_genai_sdk.Client(api_key=GOOGLE_API_KEY) # Using the aliased import
138
- logger.info("google-genai SDK Client initialized successfully.")
139
- except Exception as e:
140
- logger.error(f"Failed to initialize google-genai SDK Client: {e}")
141
- google_genai_client = None
142
- else:
143
- logger.warning("GOOGLE_API_KEY not found. google-genai SDK Client not initialized.")
144
-
145
- # --- Helper Functions (Unchanged) ---
146
- def _strip_exact_match_answer(text: Any) -> str:
147
- # ... (Your original _strip_exact_match_answer function)
148
- if not isinstance(text, str): text = str(text)
149
- text_lower_check = text.lower()
150
- if text_lower_check.startswith("final answer:"):
151
- text = text[len("final answer:"):].strip()
152
- text = text.strip()
153
- if text.startswith("```") and text.endswith("```"):
154
- if "\n" in text:
155
- text_content = text.split("\n", 1)[1] if len(text.split("\n", 1)) > 1 else ""
156
- text = text_content.strip()[:-3].strip() if text_content.strip().endswith("```") else text[3:-3].strip()
157
- else: text = text[3:-3].strip()
158
- elif text.startswith("`") and text.endswith("`"): text = text[1:-1].strip()
159
- if (text.startswith('"') and text.endswith('"')) or \
160
- (text.startswith("'") and text.endswith("'")):
161
- if len(text) > 1: text = text[1:-1]
162
- return text.strip()
163
-
164
- def _is_full_url(url_string: str) -> bool:
165
- # ... (Your original _is_full_url function)
166
- try: result = urlparse(url_string); return all([result.scheme, result.netloc])
167
- except ValueError: return False
168
-
169
- def _is_youtube_url(url: str) -> bool:
170
- # ... (Your original _is_youtube_url function)
171
- parsed_url = urlparse(url)
172
- return parsed_url.netloc.lower().endswith(("youtube.com", "youtu.be"))
173
-
174
- def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None) -> str:
175
- # ... (Your original _download_file function - unchanged) ...
176
- os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
177
- logger.debug(f"Download request: '{file_identifier}', task_id: {task_id_for_file}")
178
- original_filename = os.path.basename(urlparse(file_identifier).path) if _is_full_url(file_identifier) else os.path.basename(file_identifier)
179
- if not original_filename or original_filename == '/':
180
- original_filename = hashlib.md5(file_identifier.encode()).hexdigest()[:12] + ".download"
181
- prefix = f"{task_id_for_file}_" if task_id_for_file else ""
182
- sanitized_original_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in original_filename)
183
- tentative_local_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_original_filename}")
184
-
185
- if _is_full_url(file_identifier) and _is_youtube_url(file_identifier):
186
- logger.info(f"YouTube URL: {file_identifier}. Using yt-dlp.")
187
- yt_file_hash = hashlib.md5(file_identifier.encode()).hexdigest()[:10]
188
- yt_filename_base = f"youtube_{prefix}{yt_file_hash}"
189
- target_mp3_path = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + ".mp3")
190
- if os.path.exists(target_mp3_path) and os.path.getsize(target_mp3_path) > 0:
191
- logger.info(f"Cached YouTube MP3: {target_mp3_path}"); return target_mp3_path
192
- temp_output_template = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + "_temp.%(ext)s")
193
- try:
194
- command = ['yt-dlp', '--quiet', '--no-warnings', '-x', '--audio-format', 'mp3',
195
- '--audio-quality', '0', '--max-filesize', str(MAX_FILE_SIZE_BYTES),
196
- '-o', temp_output_template, file_identifier]
197
- logger.info(f"yt-dlp command: {' '.join(command)}")
198
- process = subprocess.run(command, capture_output=True, text=True, timeout=180, check=False)
199
- downloaded_temp_file = next((os.path.join(LOCAL_FILE_STORE_PATH, f) for f in os.listdir(LOCAL_FILE_STORE_PATH)
200
- if f.startswith(yt_filename_base + "_temp") and f.endswith(".mp3")), None)
201
- if process.returncode == 0 and downloaded_temp_file and os.path.exists(downloaded_temp_file):
202
- os.rename(downloaded_temp_file, target_mp3_path)
203
- logger.info(f"yt-dlp success: {target_mp3_path}"); return target_mp3_path
204
- else:
205
- err_msg = process.stderr.strip() if process.stderr else "Unknown yt-dlp error"
206
- logger.error(f"yt-dlp failed. RC:{process.returncode}. File:{downloaded_temp_file}. Err:{err_msg[:500]}")
207
- if downloaded_temp_file and os.path.exists(downloaded_temp_file): os.remove(downloaded_temp_file)
208
- return f"Error: yt-dlp failed. Msg:{err_msg[:200]}"
209
- except Exception as e: logger.error(f"yt-dlp exception: {e}", exc_info=True); return f"Error: yt-dlp exception: {str(e)[:200]}"
210
-
211
- file_url_to_try = file_identifier if _is_full_url(file_identifier) else None
212
- if not file_url_to_try and task_id_for_file:
213
- file_url_to_try = f"{SCORING_API_BASE_URL.rstrip('/')}/files/{task_id_for_file}"
214
- elif not file_url_to_try:
215
- if os.path.exists(file_identifier): logger.info(f"Using local file: {file_identifier}"); return file_identifier
216
- return f"Error: Not URL, not local, no task_id for '{file_identifier}'."
217
-
218
- if os.path.exists(tentative_local_path) and os.path.getsize(tentative_local_path) > 0:
219
- logger.info(f"Cached file (pre-CD): {tentative_local_path}"); return tentative_local_path
220
- effective_save_path = tentative_local_path
221
- try:
222
- auth_headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN and \
223
- any(s in file_url_to_try for s in [SCORING_API_BASE_URL, ".hf.space", "huggingface.co"]) else {}
224
- logger.info(f"Standard download: {file_url_to_try} (Headers: {list(auth_headers.keys())})")
225
- with requests.get(file_url_to_try, stream=True, headers=auth_headers, timeout=60) as r:
226
- r.raise_for_status()
227
- cd_header = r.headers.get('content-disposition')
228
- filename_from_cd = None
229
- if cd_header:
230
- try:
231
- decoded_cd_header = cd_header.encode('latin-1', 'replace').decode('utf-8', 'replace')
232
- _, params = requests.utils.parse_header_links(decoded_cd_header) # type: ignore
233
- for key, val in params.items():
234
- if key.lower() == 'filename*' and val.lower().startswith("utf-8''"):
235
- filename_from_cd = requests.utils.unquote(val[len("utf-8''"):]); break
236
- elif key.lower() == 'filename':
237
- filename_from_cd = requests.utils.unquote(val)
238
- if filename_from_cd.startswith('"') and filename_from_cd.endswith('"'): filename_from_cd = filename_from_cd[1:-1]
239
- break
240
- except Exception as e_cd: logger.warning(f"CD parse error '{cd_header}': {e_cd}")
241
- if filename_from_cd:
242
- sanitized_cd_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in filename_from_cd)
243
- effective_save_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_cd_filename}")
244
- logger.info(f"Using CD filename: '{sanitized_cd_filename}'. Path: {effective_save_path}")
245
-
246
- name_without_ext, current_ext = os.path.splitext(effective_save_path)
247
- if not current_ext:
248
- content_type_header = r.headers.get('content-type', '')
249
- content_type_val = content_type_header.split(';')[0].strip() if content_type_header else ''
250
- if content_type_val:
251
- guessed_ext = mimetypes.guess_extension(content_type_val)
252
- if guessed_ext: effective_save_path += guessed_ext; logger.info(f"Added guessed ext: {guessed_ext}")
253
-
254
- if effective_save_path != tentative_local_path and os.path.exists(effective_save_path) and os.path.getsize(effective_save_path) > 0:
255
- logger.info(f"Cached file (CD name): {effective_save_path}"); return effective_save_path
256
- with open(effective_save_path, "wb") as f_download:
257
- for chunk in r.iter_content(chunk_size=1024*1024): f_download.write(chunk)
258
- logger.info(f"File downloaded to {effective_save_path}"); return effective_save_path
259
- except requests.exceptions.HTTPError as e:
260
- err_msg = f"HTTP {e.response.status_code} for {file_url_to_try}. Detail: {e.response.text[:100]}"
261
- logger.error(err_msg, exc_info=False); return f"Error downloading: {err_msg}"
262
- except Exception as e:
263
- logger.error(f"Download error for {file_url_to_try}: {e}", exc_info=True); return f"Error: {str(e)[:100]}"
264
-
265
- # --- Tool Function Definitions ---
266
- READ_PDF_TOOL_DESC = "Reads text content from a PDF file. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
267
- @lc_tool_decorator(description=READ_PDF_TOOL_DESC)
268
- def read_pdf_tool(action_input_json_str: str) -> str:
269
- # ... (Your original read_pdf_tool logic)
270
- if not PYPDF2_AVAILABLE: return "Error: PyPDF2 not installed."
271
- try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
272
- except Exception as e: return f"Error parsing JSON for read_pdf_tool: {e}. Input: {action_input_json_str}"
273
- if not file_id: return "Error: 'file_identifier' missing."
274
- path = _download_file(file_id, task_id)
275
- if path.startswith("Error:"): return path
276
- try:
277
- text_content = "";
278
- with open(path, "rb") as f_pdf:
279
- reader = PdfReader(f_pdf)
280
- if reader.is_encrypted:
281
- try: reader.decrypt('')
282
- except: return f"Error: PDF '{path}' encrypted."
283
- for page_num in range(len(reader.pages)):
284
- page = reader.pages[page_num]
285
- text_content += page.extract_text() + "\n\n"
286
- return text_content[:40000]
287
- except Exception as e: return f"Error reading PDF '{path}': {e}"
288
-
289
- OCR_IMAGE_TOOL_DESC = "Extracts text from an image using OCR. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."
290
- @lc_tool_decorator(description=OCR_IMAGE_TOOL_DESC)
291
- def ocr_image_tool(action_input_json_str: str) -> str:
292
- # ... (Your original ocr_image_tool logic)
293
- if not PIL_TESSERACT_AVAILABLE: return "Error: Pillow/Pytesseract not installed."
294
- try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
295
- except Exception as e: return f"Error parsing JSON for ocr_image_tool: {e}. Input: {action_input_json_str}"
296
- if not file_id: return "Error: 'file_identifier' missing."
297
- path = _download_file(file_id, task_id)
298
- if path.startswith("Error:"): return path
299
- try: return pytesseract.image_to_string(Image.open(path))[:40000]
300
- except Exception as e: return f"Error OCR'ing '{path}': {e}"
301
-
302
- TRANSCRIBE_AUDIO_TOOL_DESC = "Transcribes speech from an audio file (or YouTube URL) to text. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL_OR_YOUTUBE_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns transcript."
303
- @lc_tool_decorator(description=TRANSCRIBE_AUDIO_TOOL_DESC)
304
- def transcribe_audio_tool(action_input_json_str: str) -> str:
305
- # ... (Your original transcribe_audio_tool logic)
306
- global WHISPER_MODEL
307
- if not WHISPER_AVAILABLE: return "Error: Whisper not installed."
308
- try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
309
- except Exception as e: return f"Error parsing JSON for transcribe_audio_tool: {e}. Input: {action_input_json_str}"
310
- if not file_id: return "Error: 'file_identifier' missing."
311
- if WHISPER_MODEL is None:
312
- try: WHISPER_MODEL = whisper.load_model("base"); logger.info("Whisper 'base' model loaded.")
313
- except Exception as e: logger.error(f"Whisper load failed: {e}"); return f"Error: Whisper load: {e}"
314
- path = _download_file(file_id, task_id)
315
- if path.startswith("Error:"): return path
316
- try: result = WHISPER_MODEL.transcribe(path, fp16=False); return result["text"][:40000] # type: ignore
317
- except Exception as e: logger.error(f"Whisper error on '{path}': {e}", exc_info=True); return f"Error transcribing '{path}': {e}"
318
-
319
- DIRECT_MULTIMODAL_GEMINI_TOOL_DESC = (
320
- "Processes an image file (URL or local path) along with a text prompt using a Gemini multimodal model (gemini-2.0-flash-exp) "
321
- "for tasks like image description, Q&A about the image, or text generation based on the image. "
322
- "Input: JSON '{\"file_identifier\": \"IMAGE_FILENAME_OR_URL\", \"text_prompt\": \"Your question or instruction.\", \"task_id\": \"TASK_ID\" (optional)}'. "
323
- "Returns the model's text response."
324
- )
325
- @lc_tool_decorator(description=DIRECT_MULTIMODAL_GEMINI_TOOL_DESC)
326
- def direct_multimodal_gemini_tool(action_input_json_str: str) -> str:
327
- # ... (Implementation from previous response)
328
- global google_genai_client
329
- if not google_genai_client: return "Error: google-genai SDK client not initialized."
330
- if not PIL_TESSERACT_AVAILABLE : return "Error: Pillow (PIL) library not available."
331
- try:
332
- data = json.loads(action_input_json_str)
333
- file_identifier = data.get("file_identifier")
334
- text_prompt = data.get("text_prompt", "Describe this image.")
335
- task_id = data.get("task_id")
336
- if not file_identifier: return "Error: 'file_identifier' for image missing."
337
- logger.info(f"Direct Multimodal Tool: Image '{file_identifier}', Prompt '{text_prompt}'")
338
- local_image_path = _download_file(file_identifier, task_id)
339
- if local_image_path.startswith("Error:"): return f"Error downloading for Direct MM Tool: {local_image_path}"
340
- try:
341
- pil_image = Image.open(local_image_path)
342
- except Exception as e_img_open: return f"Error opening image {local_image_path}: {str(e_img_open)}"
343
- # Use the google_genai_client (which is google.genai.Client)
344
- # For the client SDK, model names often don't need "models/" prefix if it's a tuned model or specific ID.
345
- # If it's a base model, "models/" is usually required. Let's assume GEMINI_FLASH_MULTIMODAL_MODEL_NAME is a direct ID.
346
- # However, to be safe with client.models.generate_content, using "models/" is more standard.
347
- model_id_for_client = f"models/{GEMINI_FLASH_MULTIMODAL_MODEL_NAME}" if not GEMINI_FLASH_MULTIMODAL_MODEL_NAME.startswith("models/") else GEMINI_FLASH_MULTIMODAL_MODEL_NAME
348
-
349
- response = google_genai_client.models.generate_content(
350
- model=model_id_for_client,
351
- contents=[pil_image, text_prompt]
352
- )
353
- logger.info(f"Direct Multimodal Tool: Response received from {model_id_for_client} received.")
354
- return response.text[:40000]
355
- except json.JSONDecodeError as e_json_mm: return f"Error parsing JSON for Direct MM Tool: {str(e_json_mm)}. Input: {action_input_json_str}"
356
- except Exception as e_tool_mm:
357
- logger.error(f"Error in direct_multimodal_gemini_tool: {e_tool_mm}", exc_info=True)
358
- return f"Error executing Direct Multimodal Tool: {str(e_tool_mm)}"
359
-
360
- # --- Agent Prompts (Unchanged) ---
361
- LANGGRAPH_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
362
- Your goal is to provide an EXACT MATCH final answer. No conversational text, explanations, or markdown unless explicitly part of the answer.
363
- TOOLS:
364
- You have access to the following tools. Use them if necessary.
365
- {tools}
366
- TOOL USAGE:
367
- - To use a tool, your response must include a `tool_calls` attribute in the AIMessage. Each tool call should be a dictionary with "name", "args" (a dictionary of arguments), and "id".
368
- - For file tools ('read_pdf_tool', 'ocr_image_tool', 'transcribe_audio_tool', 'direct_multimodal_gemini_tool'): `args` must contain 'file_identifier' (filename/URL) and 'task_id' (if GAIA file). For 'direct_multimodal_gemini_tool', also include 'text_prompt'.
369
- - 'web_search': `args` is like '{{"query": "search query"}}'.
370
- - 'python_repl': `args` is like '{{"command": "python code string"}}'. Use print() for output.
371
- RESPONSE FORMAT:
372
- Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
373
- Begin!
374
- Current Task Details (including Task ID and any associated files):
375
- {input}"""
376
-
377
- REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
378
- Goal: EXACT MATCH answer. No extra text/markdown.
379
- Tools: {tools}
380
- Process: Question -> Thought -> Action (ONE of [{tool_names}]) -> Action Input -> Observation -> Thought ... -> Final Answer: [exact answer]
381
- Tool Inputs:
382
- - web_search: Your search query string.
383
- - python_repl: Python code string. Use print(). For Excel/CSV, use pandas: import pandas as pd; df = pd.read_excel('./Data/TASKID_filename.xlsx'); print(df.head())
384
- - read_pdf_tool, ocr_image_tool, transcribe_audio_tool: JSON string like '{{"file_identifier": "FILENAME_OR_URL", "task_id": "CURRENT_TASK_ID_IF_FILENAME"}}'.
385
- - direct_multimodal_gemini_tool: JSON string like '{{"file_identifier": "IMAGE_FILENAME_OR_URL", "text_prompt": "Your prompt for the image.", "task_id": "TASK_ID_IF_GAIA_FILENAME"}}'.
386
- If tool fails or info missing, Final Answer: N/A. Do NOT use unlisted tools.
387
- Begin!
388
- {input}
389
- Thought:{agent_scratchpad}"""
390
-
391
-
392
- # --- Agent Initialization and Response Logic ---
393
  def initialize_agent_and_tools(force_reinit=False):
394
  global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class, LANGGRAPH_MEMORY_SAVER, google_genai_client
395
  if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
396
  logger.info("Initializing agent and tools...")
397
  if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
398
-
399
- # Using INTEGER VALUES for HarmCategory keys and HarmBlockThreshold enum .value for values.
 
 
400
  llm_safety_settings_corrected_final = {
401
  HarmCategory.HARM_CATEGORY_HARASSMENT.value: HarmBlockThreshold.BLOCK_NONE.value,
402
  HarmCategory.HARM_CATEGORY_HATE_SPEECH.value: HarmBlockThreshold.BLOCK_NONE.value,
403
  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT.value: HarmBlockThreshold.BLOCK_NONE.value,
404
  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT.value: HarmBlockThreshold.BLOCK_NONE.value,
405
  }
406
-
407
  try:
408
  LLM_INSTANCE = ChatGoogleGenerativeAI(
409
  model=GEMINI_MODEL_NAME,
410
  google_api_key=GOOGLE_API_KEY,
411
  temperature=0.0,
412
- safety_settings=llm_safety_settings_corrected_final, # USE THE DICTIONARY WITH INT VALUES FOR BOTH
413
  timeout=120,
414
  convert_system_message_to_human=True
415
  )
@@ -452,7 +62,6 @@ def initialize_agent_and_tools(force_reinit=False):
452
  if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
453
  tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
454
 
455
-
456
  def tool_node(state: AgentState):
457
  last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
458
  if not last_msg or not last_msg.tool_calls: return {"messages": []}
@@ -503,169 +112,3 @@ def initialize_agent_and_tools(force_reinit=False):
503
 
504
  if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
505
  logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
506
-
507
- # --- get_agent_response, construct_prompt_for_agent, run_and_submit_all (Unchanged) ---
508
- def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
509
- # ... (Your original get_agent_response logic - unchanged) ...
510
- global AGENT_INSTANCE, LLM_INSTANCE
511
- thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
512
- if not AGENT_INSTANCE or not LLM_INSTANCE:
513
- logger.warning("Agent/LLM not initialized in get_agent_response. Attempting re-initialization.")
514
- try: initialize_agent_and_tools(force_reinit=True)
515
- except Exception as e_reinit_get: logger.error(f"Re-initialization failed: {e_reinit_get}"); return f"[ERROR] Agent/LLM re-init failed: {str(e_reinit_get)}"
516
- if not AGENT_INSTANCE or not LLM_INSTANCE: return "[ERROR] Agent/LLM still None after re-init."
517
- agent_name_get = type(AGENT_INSTANCE).__name__
518
- logger.info(f"Agent ({agent_name_get}) processing. Task: {task_id or 'N/A'}. Thread: {thread_id_to_use}.")
519
- is_langgraph_agent_get = LANGGRAPH_FLAVOR_AVAILABLE and AGENT_INSTANCE and hasattr(AGENT_INSTANCE, 'graph') and hasattr(AGENT_INSTANCE, 'config_schema')
520
- try:
521
- if is_langgraph_agent_get:
522
- logger.debug(f"Using LangGraph agent (Memory: {LANGGRAPH_MEMORY_SAVER is not None}) for thread: {thread_id_to_use}")
523
- initial_messages_lg_get = []
524
- input_for_lg_get = {"input": prompt, "messages": initial_messages_lg_get}
525
- final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}}) # type: ignore
526
- if not final_state_lg_get or 'messages' not in final_state_lg_get or not final_state_lg_get['messages']:
527
- logger.error("LangGraph: No final state/messages."); return "[ERROR] LangGraph: No final state/messages."
528
- for message_item_lg_get in reversed(final_state_lg_get['messages']):
529
- if isinstance(message_item_lg_get, AIMessage) and not message_item_lg_get.tool_calls:
530
- return str(message_item_lg_get.content)
531
- logger.warning("LangGraph: No suitable final AIMessage without tool_calls.")
532
- return str(final_state_lg_get['messages'][-1].content) if final_state_lg_get['messages'] else "[ERROR] LangGraph: Empty messages."
533
- elif isinstance(AGENT_INSTANCE, AgentExecutor):
534
- logger.debug("Using ReAct agent.")
535
- response_react_get = AGENT_INSTANCE.invoke({"input": prompt})
536
- return str(response_react_get.get("output", "[ERROR] ReAct: No 'output' key."))
537
- else:
538
- logger.error(f"Unknown agent type: {agent_name_get}"); return f"[ERROR] Unknown agent type: {agent_name_get}"
539
- except Exception as e_agent_run_get:
540
- logger.error(f"Error during agent execution ({agent_name_get}): {e_agent_run_get}", exc_info=True)
541
- return f"[ERROR] Agent execution failed: {str(e_agent_run_get)[:150]}"
542
-
543
- def construct_prompt_for_agent(q: Dict[str,Any]) -> str:
544
- # ... (Your original construct_prompt_for_agent logic - unchanged) ...
545
- tid,q_str=q.get("task_id","N/A"),q.get("question",""); files=q.get("files",[])
546
- files_info = ("\nFiles:\n"+"\n".join([f"- {f} (task_id:{tid})"for f in files])) if files else ""
547
- level = f"\nLevel:{q.get('level')}" if q.get('level') else ""
548
- return f"Task ID:{tid}{level}{files_info}\n\nQuestion:{q_str}"
549
-
550
- def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
551
- # ... (Your original run_and_submit_all logic - unchanged) ...
552
- global AGENT_INSTANCE
553
- space_id = os.getenv("SPACE_ID")
554
- username_for_submission = None
555
- if profile and hasattr(profile, 'username') and profile.username:
556
- username_for_submission = profile.username
557
- logger.info(f"Username from OAuth profile: {username_for_submission}")
558
- else:
559
- logger.warning("OAuth profile not available or username missing.")
560
- return "Hugging Face login required. Please use the login button and try again.", None
561
- if AGENT_INSTANCE is None:
562
- try: logger.info("Agent not pre-initialized. Initializing for run..."); initialize_agent_and_tools()
563
- except Exception as e: return f"Agent on-demand initialization failed: {e}", None
564
- if AGENT_INSTANCE is None: return "Agent is still None after on-demand init.", None
565
- agent_code_url_run=f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_dev_run"
566
- questions_url_run,submit_url_run=f"{DEFAULT_API_URL}/questions",f"{DEFAULT_API_URL}/submit"
567
- auth_headers_run={"Authorization":f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN else {}
568
- try:
569
- logger.info(f"Fetching questions from {questions_url_run}")
570
- response_q_run=requests.get(questions_url_run,headers=auth_headers_run,timeout=30);response_q_run.raise_for_status();questions_data_run=response_q_run.json()
571
- if not questions_data_run or not isinstance(questions_data_run,list):logger.error(f"Invalid questions data: {questions_data_run}");return "Fetched questions_data invalid.",None
572
- logger.info(f"Fetched {len(questions_data_run)} questions.")
573
- except Exception as e:logger.error(f"Fetch questions error: {e}",exc_info=True);return f"Fetch questions error:{e}",None
574
- results_log_run,answers_payload_run=[],[]
575
- logger.info(f"Running agent on {len(questions_data_run)} questions for user '{username_for_submission}'...")
576
- for i,item_run in enumerate(questions_data_run):
577
- task_id_run,question_text_run=item_run.get("task_id"),item_run.get("question")
578
- if not task_id_run or question_text_run is None:logger.warning(f"Skipping item: {item_run}");continue
579
- prompt_run=construct_prompt_for_agent(item_run);thread_id_run=f"gaia_batch_task_{task_id_run}"
580
- logger.info(f"Processing Q {i+1}/{len(questions_data_run)} - Task: {task_id_run}")
581
- try:
582
- raw_answer_run=get_agent_response(prompt_run,task_id=task_id_run,thread_id=thread_id_run);submitted_answer_run=_strip_exact_match_answer(raw_answer_run)
583
- answers_payload_run.append({"task_id":task_id_run,"submitted_answer":submitted_answer_run})
584
- results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":raw_answer_run,"Submitted Answer":submitted_answer_run})
585
- except Exception as e:
586
- logger.error(f"Agent error task {task_id_run}:{e}",exc_info=True);error_answer_run=f"AGENT ERROR:{str(e)[:100]}"
587
- answers_payload_run.append({"task_id":task_id_run,"submitted_answer":"N/A [AGENT_ERROR]"})
588
- results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":error_answer_run,"Submitted Answer":"N/A [AGENT_ERROR]"})
589
- if not answers_payload_run:return "Agent produced no answers.",pd.DataFrame(results_log_run)
590
- submission_payload_run={"username":username_for_submission.strip(),"agent_code":agent_code_url_run,"answers":answers_payload_run}
591
- logger.info(f"Submitting {len(answers_payload_run)} answers to {submit_url_run} for user '{username_for_submission}'...")
592
- submission_headers_run={"Content-Type":"application/json",**auth_headers_run}
593
- try:
594
- response_s_run=requests.post(submit_url_run,json=submission_payload_run,headers=submission_headers_run,timeout=120);response_s_run.raise_for_status();submission_result_run=response_s_run.json()
595
- result_message_run=(f"User:{submission_result_run.get('username',username_for_submission)}\nScore:{submission_result_run.get('score','N/A')}% ({submission_result_run.get('correct_count','?')}/{submission_result_run.get('total_attempted','?')})\nMsg:{submission_result_run.get('message','N/A')}")
596
- logger.info(f"Submission OK! {result_message_run}");return f"Submission OK!\n{result_message_run}",pd.DataFrame(results_log_run,columns=["Task ID","Question","Full Agent Prompt","Raw Agent Output","Submitted Answer"])
597
- except requests.exceptions.HTTPError as e:
598
- error_http_run=f"HTTP {e.response.status_code}. Detail:{e.response.text[:200]}"; logger.error(f"Submit Fail:{error_http_run}",exc_info=True); return f"Submit Fail:{error_http_run}",pd.DataFrame(results_log_run)
599
- except Exception as e:logger.error(f"Submit Fail unexpected:{e}",exc_info=True);return f"Submit Fail:{str(e)[:100]}",pd.DataFrame(results_log_run)
600
-
601
- # --- Build Gradio Interface ---
602
- with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !important;}",theme=gr.themes.Soft()) as demo:
603
- gr.Markdown("# GAIA Agent Challenge Runner v7 (OAuth for Username)")
604
- gr.Markdown(f"""**Instructions:**
605
- 1. **Login with Hugging Face** using the button below. Your HF username will be used for submission.
606
- 2. Click 'Run Evaluation & Submit' to process GAIA questions (typically 20).
607
- 3. **Goal: 30%+ (6/20).** Agent uses Gemini Pro ({GEMINI_MODEL_NAME}) as planner. Tools include Web Search, Python, PDF, OCR, Audio/YouTube, and a new Direct Multimodal tool using Gemini Flash ({GEMINI_FLASH_MULTIMODAL_MODEL_NAME}).
608
- 4. Ensure `GOOGLE_API_KEY` and `HUGGINGFACE_TOKEN` are Space secrets.
609
- 5. Check Space logs for details. LangGraph is attempted (ReAct fallback).""")
610
-
611
- agent_status_display = gr.Markdown("**Agent Status:** Initializing...")
612
- missing_secrets_display = gr.Markdown("")
613
-
614
- gr.LoginButton()
615
- run_button = gr.Button("Run Evaluation & Submit All Answers")
616
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=7, interactive=False)
617
- results_table = gr.DataFrame(label="Q&A Log", headers=["Task ID","Question","Prompt","Raw","Submitted"], wrap=True) # Removed height
618
-
619
- run_button.click(fn=run_and_submit_all, outputs=[status_output,results_table], api_name="run_evaluation")
620
-
621
- def update_ui_on_load_fn_within_context():
622
- global missing_vars_startup_list_global, agent_pre_init_status_msg_global
623
- secrets_msg_md = ""
624
- if missing_vars_startup_list_global:
625
- secrets_msg_md = f"<font color='red'>**⚠️ Secrets Missing:** {', '.join(missing_vars_startup_list_global)}.</font>"
626
- env_issues = []
627
- try: subprocess.run(['yt-dlp','--version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
628
- except: env_issues.append("yt-dlp"); logger.warning("yt-dlp check failed (UI load).")
629
- try: subprocess.run(['ffmpeg','-version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
630
- except: env_issues.append("ffmpeg"); logger.warning("ffmpeg check failed (UI load).")
631
- if env_issues: secrets_msg_md += f"<br/><font color='orange'>**Tool Deps Missing:** {', '.join(env_issues)}.</font>"
632
- current_status_md = agent_pre_init_status_msg_global
633
- if not LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
634
- current_status_md += f" (LangGraph core components not fully loaded: LG_ToolExecutor_Class is {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'None'}, ReAct fallback.)"
635
- elif LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
636
- current_status_md += f" (LangGraph ready with {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'UnknownExecutor'}.)"
637
- return { agent_status_display: gr.Markdown(value=current_status_md),
638
- missing_secrets_display: gr.Markdown(value=secrets_msg_md) }
639
-
640
- demo.load(update_ui_on_load_fn_within_context, [], [agent_status_display, missing_secrets_display])
641
-
642
- if __name__ == "__main__":
643
- logger.info(f"Application starting up (v7 - Corrected GenAI Types Import)...")
644
- if not PYPDF2_AVAILABLE: logger.warning("PyPDF2 (PDF tool) NOT AVAILABLE.")
645
- if not PIL_TESSERACT_AVAILABLE: logger.warning("Pillow/Pytesseract (OCR tool) NOT AVAILABLE.")
646
- if not WHISPER_AVAILABLE: logger.warning("Whisper (Audio tool) NOT AVAILABLE.")
647
- if LANGGRAPH_FLAVOR_AVAILABLE: logger.info(f"Core LangGraph components (StateGraph, END, {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'FailedExecutor'}) loaded.")
648
- else: logger.warning("Core LangGraph FAILED import or essential component (ToolExecutor/Node) missing. ReAct fallback. Check requirements & Space build logs.")
649
-
650
- missing_vars_startup_list_global.clear()
651
- if not GOOGLE_API_KEY: missing_vars_startup_list_global.append("GOOGLE_API_KEY")
652
- if not HUGGINGFACE_TOKEN: missing_vars_startup_list_global.append("HUGGINGFACE_TOKEN (for GAIA API)")
653
-
654
- try:
655
- logger.info("Pre-initializing agent...")
656
- initialize_agent_and_tools()
657
- if AGENT_INSTANCE:
658
- agent_type_name = type(AGENT_INSTANCE).__name__
659
- agent_pre_init_status_msg_global = f"Agent Pre-initialized: **{agent_type_name}**."
660
- if LANGGRAPH_FLAVOR_AVAILABLE and ("StateGraph" in agent_type_name or "CompiledGraph" in agent_type_name) :
661
- lg_executor_display_name = type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else "UnknownExecutor"
662
- agent_pre_init_status_msg_global = f"Agent Pre-initialized: **LangGraph** (Executor: {lg_executor_display_name}, Memory: {LANGGRAPH_MEMORY_SAVER is not None})."
663
- else: agent_pre_init_status_msg_global = "Agent pre-init FAILED (AGENT_INSTANCE is None)."
664
- logger.info(agent_pre_init_status_msg_global.replace("**",""))
665
- except Exception as e:
666
- agent_pre_init_status_msg_global = f"Agent pre-init CRASHED: {str(e)}"
667
- logger.critical(f"Agent pre-init CRASHED: {e}", exc_info=True)
668
-
669
- logger.info(f"Space ID: {os.getenv('SPACE_ID', 'Not Set')}")
670
- logger.info("Gradio Interface launching...")
671
- demo.queue().launch(debug=os.getenv("GRADIO_DEBUG","false").lower()=="true", share=False, max_threads=20)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def initialize_agent_and_tools(force_reinit=False):
2
  global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class, LANGGRAPH_MEMORY_SAVER, google_genai_client
3
  if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
4
  logger.info("Initializing agent and tools...")
5
  if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
6
+
7
+ # CORRECCIÓN: Usa los .value, no strings
8
+ from google.genai.types import HarmCategory, HarmBlockThreshold
9
+
10
  llm_safety_settings_corrected_final = {
11
  HarmCategory.HARM_CATEGORY_HARASSMENT.value: HarmBlockThreshold.BLOCK_NONE.value,
12
  HarmCategory.HARM_CATEGORY_HATE_SPEECH.value: HarmBlockThreshold.BLOCK_NONE.value,
13
  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT.value: HarmBlockThreshold.BLOCK_NONE.value,
14
  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT.value: HarmBlockThreshold.BLOCK_NONE.value,
15
  }
16
+
17
  try:
18
  LLM_INSTANCE = ChatGoogleGenerativeAI(
19
  model=GEMINI_MODEL_NAME,
20
  google_api_key=GOOGLE_API_KEY,
21
  temperature=0.0,
22
+ safety_settings=llm_safety_settings_corrected_final, # AQUÍ EL CAMBIO
23
  timeout=120,
24
  convert_system_message_to_human=True
25
  )
 
62
  if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
63
  tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
64
 
 
65
  def tool_node(state: AgentState):
66
  last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
67
  if not last_msg or not last_msg.tool_calls: return {"messages": []}
 
112
 
113
  if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
114
  logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")