Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import joblib
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Function to load the model from HuggingFace
|
10 |
+
def load_model_from_hf(model_id="jersonalvr/random"):
|
11 |
+
# Create a cache directory
|
12 |
+
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "random_number_generator")
|
13 |
+
os.makedirs(cache_dir, exist_ok=True)
|
14 |
+
|
15 |
+
# Download tokenizer
|
16 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_id, cache_dir=cache_dir)
|
17 |
+
|
18 |
+
# Download model
|
19 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_id, cache_dir=cache_dir)
|
20 |
+
|
21 |
+
# Download label encoder
|
22 |
+
try:
|
23 |
+
label_encoder_path = hf_hub_download(
|
24 |
+
repo_id=model_id,
|
25 |
+
filename="label_encoder.joblib",
|
26 |
+
cache_dir=cache_dir
|
27 |
+
)
|
28 |
+
label_encoder = joblib.load(label_encoder_path)
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error downloading label encoder: {e}")
|
31 |
+
# Fallback: create a basic label encoder
|
32 |
+
from sklearn.preprocessing import LabelEncoder
|
33 |
+
label_encoder = LabelEncoder()
|
34 |
+
label_encoder.classes_ = ['generar_numero_unico', 'generar_numero_digitos', 'generar_numeros_rango', 'generar_numeros_sin_rango']
|
35 |
+
|
36 |
+
return model, tokenizer, label_encoder
|
37 |
+
|
38 |
+
# Function to predict intent
|
39 |
+
def predict_intent(prompt, model, tokenizer, label_encoder):
|
40 |
+
inputs = tokenizer(
|
41 |
+
prompt,
|
42 |
+
return_tensors="pt",
|
43 |
+
max_length=32,
|
44 |
+
truncation=True,
|
45 |
+
padding='max_length'
|
46 |
+
)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
logits = model(**inputs).logits
|
50 |
+
|
51 |
+
pred_id = torch.argmax(logits, dim=1).item()
|
52 |
+
intent = label_encoder.inverse_transform([pred_id])[0]
|
53 |
+
return intent
|
54 |
+
|
55 |
+
# Intelligent parameter extraction
|
56 |
+
def extract_parameters(prompt):
|
57 |
+
# Basic parameter extraction logic
|
58 |
+
params = {
|
59 |
+
"count": 1,
|
60 |
+
"min": 0,
|
61 |
+
"max": 9999
|
62 |
+
}
|
63 |
+
|
64 |
+
# Look for number of numbers
|
65 |
+
if "un número" in prompt or "un numero" in prompt:
|
66 |
+
params["count"] = 1
|
67 |
+
elif any(word in prompt for word in ["2 números", "2 numeros", "dos números", "dos numeros"]):
|
68 |
+
params["count"] = 2
|
69 |
+
elif any(word in prompt for word in ["3 números", "3 numeros", "tres números", "tres numeros"]):
|
70 |
+
params["count"] = 3
|
71 |
+
elif any(word in prompt for word in ["4 números", "4 numeros", "cuatro números", "cuatro numeros"]):
|
72 |
+
params["count"] = 4
|
73 |
+
elif any(word in prompt for word in ["5 números", "5 numeros", "cinco números", "cinco numeros"]):
|
74 |
+
params["count"] = 5
|
75 |
+
elif any(word in prompt for word in ["10 números", "10 numeros", "diez números", "diez numeros"]):
|
76 |
+
params["count"] = 10
|
77 |
+
|
78 |
+
# Look for specific ranges
|
79 |
+
ranges = [
|
80 |
+
(0, 9, "un dígito", "un digito"),
|
81 |
+
(10, 99, "dos dígitos", "dos digitos"),
|
82 |
+
(100, 999, "tres dígitos", "tres digitos"),
|
83 |
+
(1000, 9999, "cuatro dígitos", "cuatro digitos"),
|
84 |
+
]
|
85 |
+
|
86 |
+
for min_val, max_val, *range_words in ranges:
|
87 |
+
if any(word in prompt.lower() for word in range_words):
|
88 |
+
params["min"] = min_val
|
89 |
+
params["max"] = max_val
|
90 |
+
break
|
91 |
+
|
92 |
+
# Custom range extraction
|
93 |
+
import re
|
94 |
+
range_match = re.search(r'entre\s+(-?\d+)\s+y\s+(-?\d+)', prompt.lower())
|
95 |
+
if range_match:
|
96 |
+
params["min"] = int(range_match.group(1))
|
97 |
+
params["max"] = int(range_match.group(2))
|
98 |
+
|
99 |
+
return params
|
100 |
+
|
101 |
+
# Function to generate numbers
|
102 |
+
def generate_numbers(intent_params, distinct=False):
|
103 |
+
count = intent_params["count"]
|
104 |
+
min_val = intent_params["min"]
|
105 |
+
max_val = intent_params["max"]
|
106 |
+
|
107 |
+
# Handle distinct numbers case
|
108 |
+
if distinct and count <= (max_val - min_val + 1):
|
109 |
+
return random.sample(range(min_val, max_val + 1), count)
|
110 |
+
else:
|
111 |
+
return [random.randint(min_val, max_val) for _ in range(count)]
|
112 |
+
|
113 |
+
# Predefined example prompts
|
114 |
+
EXAMPLE_PROMPTS = [
|
115 |
+
"Dame un número de dos dígitos",
|
116 |
+
"Genera 3 números entre 1 y 10",
|
117 |
+
"Necesito un número aleatorio",
|
118 |
+
"Dame 5 números de tres dígitos",
|
119 |
+
"Quiero 2 números entre 100 y 200"
|
120 |
+
]
|
121 |
+
|
122 |
+
def number_generator(prompt, distinct):
|
123 |
+
# Load model and utilities
|
124 |
+
model, tokenizer, label_encoder = load_model_from_hf()
|
125 |
+
|
126 |
+
# Predict intent
|
127 |
+
intent = predict_intent(prompt, model, tokenizer, label_encoder)
|
128 |
+
|
129 |
+
# Extract parameters intelligently
|
130 |
+
intent_params = extract_parameters(prompt)
|
131 |
+
|
132 |
+
# Generate numbers
|
133 |
+
numbers = generate_numbers(intent_params, distinct)
|
134 |
+
|
135 |
+
return {
|
136 |
+
"Prompt": prompt,
|
137 |
+
"Intent": intent,
|
138 |
+
"Parameters": intent_params,
|
139 |
+
"Generated Numbers": numbers
|
140 |
+
}
|
141 |
+
|
142 |
+
# Create Gradio interface
|
143 |
+
def create_gradio_app():
|
144 |
+
iface = gr.Interface(
|
145 |
+
fn=number_generator,
|
146 |
+
inputs=[
|
147 |
+
gr.Textbox(label="Enter your prompt"),
|
148 |
+
gr.Checkbox(label="Distinct Numbers", value=False)
|
149 |
+
],
|
150 |
+
outputs=[
|
151 |
+
gr.JSON(label="Result"),
|
152 |
+
],
|
153 |
+
title="Random Number Generator with Intent Classification",
|
154 |
+
description="Generate numbers based on your natural language prompt",
|
155 |
+
examples=[[prompt, False] for prompt in EXAMPLE_PROMPTS],
|
156 |
+
theme="default"
|
157 |
+
)
|
158 |
+
|
159 |
+
return iface
|
160 |
+
|
161 |
+
# Launch the app
|
162 |
+
if __name__ == "__main__":
|
163 |
+
app = create_gradio_app()
|
164 |
+
app.launch(share=True)
|