|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from IPython import embed |
|
|
|
from .base_color import * |
|
|
|
class ECCVGenerator(BaseColor): |
|
def __init__(self, norm_layer=nn.BatchNorm2d): |
|
super(ECCVGenerator, self).__init__() |
|
|
|
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model1+=[nn.ReLU(True),] |
|
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),] |
|
model1+=[nn.ReLU(True),] |
|
model1+=[norm_layer(64),] |
|
|
|
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model2+=[nn.ReLU(True),] |
|
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),] |
|
model2+=[nn.ReLU(True),] |
|
model2+=[norm_layer(128),] |
|
|
|
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model3+=[nn.ReLU(True),] |
|
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model3+=[nn.ReLU(True),] |
|
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),] |
|
model3+=[nn.ReLU(True),] |
|
model3+=[norm_layer(256),] |
|
|
|
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model4+=[nn.ReLU(True),] |
|
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model4+=[nn.ReLU(True),] |
|
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model4+=[nn.ReLU(True),] |
|
model4+=[norm_layer(512),] |
|
|
|
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model5+=[nn.ReLU(True),] |
|
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model5+=[nn.ReLU(True),] |
|
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model5+=[nn.ReLU(True),] |
|
model5+=[norm_layer(512),] |
|
|
|
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model6+=[nn.ReLU(True),] |
|
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model6+=[nn.ReLU(True),] |
|
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] |
|
model6+=[nn.ReLU(True),] |
|
model6+=[norm_layer(512),] |
|
|
|
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model7+=[nn.ReLU(True),] |
|
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model7+=[nn.ReLU(True),] |
|
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model7+=[nn.ReLU(True),] |
|
model7+=[norm_layer(512),] |
|
|
|
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),] |
|
model8+=[nn.ReLU(True),] |
|
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model8+=[nn.ReLU(True),] |
|
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] |
|
model8+=[nn.ReLU(True),] |
|
|
|
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),] |
|
|
|
self.model1 = nn.Sequential(*model1) |
|
self.model2 = nn.Sequential(*model2) |
|
self.model3 = nn.Sequential(*model3) |
|
self.model4 = nn.Sequential(*model4) |
|
self.model5 = nn.Sequential(*model5) |
|
self.model6 = nn.Sequential(*model6) |
|
self.model7 = nn.Sequential(*model7) |
|
self.model8 = nn.Sequential(*model8) |
|
|
|
self.softmax = nn.Softmax(dim=1) |
|
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False) |
|
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear') |
|
|
|
def forward(self, input_l): |
|
conv1_2 = self.model1(self.normalize_l(input_l)) |
|
conv2_2 = self.model2(conv1_2) |
|
conv3_3 = self.model3(conv2_2) |
|
conv4_3 = self.model4(conv3_3) |
|
conv5_3 = self.model5(conv4_3) |
|
conv6_3 = self.model6(conv5_3) |
|
conv7_3 = self.model7(conv6_3) |
|
conv8_3 = self.model8(conv7_3) |
|
out_reg = self.model_out(self.softmax(conv8_3)) |
|
|
|
return self.unnormalize_ab(self.upsample4(out_reg)) |
|
|
|
def eccv16(pretrained=True): |
|
model = ECCVGenerator() |
|
if(pretrained): |
|
import torch.utils.model_zoo as model_zoo |
|
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True)) |
|
return model |
|
|