AI_Check_project / meta_train.py
jer233's picture
Create meta_train.py
2172586 verified
import torch
from torch import nn
from collections import namedtuple
import math
from utils import DEVICE
from pytorch_transformers.modeling_bert import (
BertEncoder,
BertPreTrainedModel,
BertConfig,
)
class GeLU(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root)."""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class mlp_meta(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(config.hid_dim, config.hid_dim),
GeLU(),
BertLayerNorm(config.hid_dim, eps=1e-12),
nn.Dropout(config.dropout),
)
def forward(self, x):
return self.mlp(x)
class Bert_Transformer_Layer(BertPreTrainedModel):
def __init__(self, fusion_config):
super().__init__(BertConfig(**fusion_config))
bertconfig_fusion = BertConfig(**fusion_config)
self.encoder = BertEncoder(bertconfig_fusion)
self.init_weights()
def forward(self, input, mask=None):
"""
input:(bs, 4, dim)
"""
batch, feats, dim = input.size()
if mask is not None:
mask_ = torch.ones(size=(batch, feats), device=mask.device)
mask_[:, 1:] = mask
mask_ = torch.bmm(
mask_.view(batch, 1, -1).transpose(1, 2), mask_.view(batch, 1, -1)
)
mask_ = mask_.unsqueeze(1)
else:
mask = torch.Tensor([1.0]).to(input.device)
mask_ = mask.repeat(batch, 1, feats, feats)
extend_mask = (1 - mask_) * -10000
assert not extend_mask.requires_grad
head_mask = [None] * self.config.num_hidden_layers
enc_output = self.encoder(input, extend_mask, head_mask=head_mask)
output = enc_output[0]
all_attention = enc_output[1]
return output, all_attention
class mmdPreModel(nn.Module):
def __init__(
self,
config,
num_mlp=0,
transformer_flag=False,
num_hidden_layers=1,
mlp_flag=True,
):
super(mmdPreModel, self).__init__()
self.num_mlp = num_mlp
self.transformer_flag = transformer_flag
self.mlp_flag = mlp_flag
token_num = config.token_num
self.mlp = nn.Sequential(
nn.Linear(config.in_dim, config.hid_dim),
GeLU(),
BertLayerNorm(config.hid_dim, eps=1e-12),
nn.Dropout(config.dropout),
# nn.Linear(config.hid_dim, config.out_dim),
)
self.fusion_config = {
"hidden_size": config.in_dim,
"num_hidden_layers": num_hidden_layers,
"num_attention_heads": 4,
"output_attentions": True,
}
if self.num_mlp > 0:
self.mlp2 = nn.ModuleList([mlp_meta(config) for _ in range(self.num_mlp)])
if self.transformer_flag:
self.transformer = Bert_Transformer_Layer(self.fusion_config)
self.feature = nn.Linear(config.hid_dim * token_num, config.out_dim)
def forward(self, features):
"""
input: [batch, token_num, hidden_size], output: [batch, token_num * config.out_dim]
"""
if self.transformer_flag:
features, _ = self.transformer(features)
if self.mlp_flag:
features = self.mlp(features)
if self.num_mlp > 0:
# features = self.mlp2(features)
for _ in range(1):
for mlp in self.mlp2:
features = mlp(features)
features = self.feature(features.view(features.shape[0], -1))
return features # features.view(features.shape[0], -1)
class NetLoader:
def __init__(self):
token_num, hidden_size = 100, 768
Config = namedtuple(
"Config", ["in_dim", "hid_dim", "dropout", "out_dim", "token_num"]
)
config = Config(
in_dim=hidden_size,
token_num=token_num,
hid_dim=512,
dropout=0.2,
out_dim=300,
)
self.config = config
self.net = mmdPreModel(
config=config, num_mlp=0, transformer_flag=True, num_hidden_layers=1
)
checkpoint_filename = "./net.pt"
checkpoint = torch.load(checkpoint_filename, map_location=DEVICE)
self.net.load_state_dict(checkpoint["net"])
self.sigma, self.sigma0_u, self.ep = (
checkpoint["sigma"],
checkpoint["sigma0_u"],
checkpoint["ep"],
)
self.net = self.net.to(DEVICE)
self.sigma, self.sigma0_u, self.ep = (
self.sigma.to(DEVICE),
self.sigma0_u.to(DEVICE),
self.ep.to(DEVICE),
)
net = NetLoader()