AI_Check_project / demo.py
jer233's picture
Update demo.py
e40a325 verified
raw
history blame
3.99 kB
import gradio as gr
import spaces
# TOKENIZER =
# MINIMUM_TOKENS = 64
# def count_tokens(text):
# return len(TOKENIZER(text).input_ids)
# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
return f"Prediction: Human (Mocked for {model_name})"
# Change mode name
#def change_mode(mode):
# if mode == "Faster Model":
# .change_mode("t5-small")
# elif mode == "Medium Model":
# .change_mode("roberta-base-openai-detector")
# elif mode == "Powerful Model":
# .change_mode("falcon-rw-1b")
# else:
# gr.Error(f"Invaild mode selected.")
# return mode
css = """
#header { text-align: center; font-size: 3em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
display: flex;
justify-content: flex-end;
gap: 10px;
margin-right: 10px;
align-items: center;
}
.separator {
margin: 0 5px;
color: black;
}
/* Adjusting layout for Input Text and Inference Result */
.input-row {
display: flex;
width: 100%;
}
.input-text {
flex: 3; /* 4 parts of the row */
margin-right: 1px;
}
.output-text {
flex: 1; /* 1 part of the row */
}
/* Set button widths to match the Select Model width */
.button {
width: 250px; /* Same as the select box width */
height: 100px; /* Button height */
}
/* Set height for the Select Model dropdown */
.select {
margin: 10px;
height: 100px; /* Set height to 100px */
}
.Accordion {
Width: 100%;
}
"""
# Gradio App
with gr.Blocks(css=css) as app:
with gr.Row():
gr.HTML('<div id="header">R-detect On HuggingFace</div>')
with gr.Row():
gr.HTML("""
<div class="links">
<a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
<span class="separator">|</span>
<a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
<span class="separator">|</span>
<a href="mailto:1730421718@qq.com" target="_blank">Contact</a>
</div>
""")
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter Text Here",
lines=8,
elem_classes=["input-text"], # Applying the CSS class
)
output = gr.Textbox(
label="Inference Result",
placeholder="Made by Human or AI",
elem_id="output-text",
elem_classes=["output-text"]
)
with gr.Row():
model_name = gr.Dropdown(
[
"Faster Model",
"Medium Model",
"Powerful Model",
],
label="Select Model",
value="Medium Model",
elem_classes=["select"]
)
submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"])
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"])
submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output)
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
with gr.Accordion("Disclaimer", open=False):
gr.Markdown("""
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
- **Accuracy**: Results may vary based on input length and quality.
""")
with gr.Accordion("Citations", open=False):
gr.Markdown("""
```
@inproceedings{zhangs2024MMDMP,
title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
booktitle = {International Conference on Learning Representations (ICLR)},
year={2024}
}
```
""")
app.launch()