Spaces:
Running
Running
File size: 6,956 Bytes
c319e25 2ca9576 c319e25 2ca9576 c319e25 7f0c907 c319e25 bab44dc a3067c4 721dda7 bab44dc 721dda7 bab44dc 721dda7 bab44dc c319e25 f1930a8 a3079c6 c319e25 e542141 c319e25 a3079c6 908c00e c319e25 a3079c6 c319e25 a3079c6 0d99cb0 c319e25 a3079c6 0d99cb0 721dda7 c319e25 908c00e a3079c6 6ba4c42 c319e25 8570cc3 c319e25 8570cc3 c319e25 a3079c6 721dda7 c319e25 690de09 c319e25 a3079c6 5f85c26 a3079c6 c319e25 721dda7 c319e25 721dda7 c319e25 721dda7 c319e25 721dda7 c319e25 4bd57a5 c319e25 4bd57a5 0d99cb0 c319e25 e542141 c319e25 4bd57a5 8e16534 4bd57a5 c319e25 8e16534 c319e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
# from relative_tester import relative_tester
# from two_sample_tester import two_sample_tester
# from utils import init_random_seeds
# init_random_seeds()
def run_test(input_text):
if not input_text:
return [("Please enter text to analyze.")]
result = AI
# relative_tester.test(input_text.strip())
if "Human" in result:
return [("Human")]
elif "AI" in result:
return [("AI")]
else:
return [("Please enter a longer text")]
# TODO: Add model selection in the future
# Change mode name
# def change_mode(mode):
# if mode == "Faster Model":
# .change_mode("t5-small")
# elif mode == "Medium Model":
# .change_mode("roberta-base-openai-detector")
# elif mode == "Powerful Model":
# .change_mode("falcon-rw-1b")
# else:
# gr.Error(f"Invaild mode selected.")
# return mode
css = """
#header { text-align: center; font-size: 2.5em; margin-bottom: 5px; color: #black; font-weight: bold;}
#output-text { font-weight: bold; font-size: 1.2em; border-radius: 10px; padding: 10px; background-color: #f4f4f4;}
.links {
display: flex;
justify-content: flex-end;
gap: 5px;
margin-right: 10px;
align-items: center;
font-size: 0.9em;
color: #ADD8E6;
}
.separator {
margin: 0 5px;
color: #000;
}
/* Adjusting layout for Input Text and Inference Result */
.input-row {
display: flex;
width: 100%;
}
.input-text {
flex: 3; /* 4 parts of the row */
margin-right: 1px;
border-radius: 8px;
padding: 12px;
border: 2px solid #d1d1d1;
}
.output-text {
flex: 1; /* 1 part of the row */
border-radius: 8px;
padding: 12px;
border: 2px solid #d1d1d1;
text-align: center;
font-size: 1.2em;
font-weight: bold;
}
/* Set button widths to match the Select Model width */
.button {
width: 250px; /* Same as the select box width */
height: 100px; /* Button height */
background-color: #ADD8E6;
color: white;
font-weight: bold;
border-radius: 8px;
}
.button:hover {
background-color: #0000FF;
}
/* Set height for the Select Model dropdown */
.select {
height: 100px; /* Set height to 100px */
}
/* Accordion Styling */
.accordion {
width: 100%; /* Set the width of the accordion to match the parent */
max-height: auto; /* Set a auto-height for accordion */
margin-bottom: 10px; /* Add space below accordion */
box-sizing: border-box; /* Ensure padding is included in width/height */
}
/* Accordion content max-height */
.accordion-content {
max-height: auto; /* auto the height of the content */
}
.demo-banner {
background-color: #f3f4f6;
padding: 20px;
border-radius: 10px;
font-size: 1.1em;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
color: #ff5722;
}
/* Green for Human text */
.highlighted-human {
background-color: #d4edda;
color: #155724;
border: 2px solid #28a745;
}
/* Red for AI text */
.highlighted-ai {
background-color: #f8d7da;
color: #721c24;
border: 2px solid #dc3545;
}
/* Yellow for errors */
.highlighted-error {
background-color: #fff3cd;
color: #856404;
border: 2px solid #ffc107;
}
"""
# Gradio App
with gr.Blocks(css=css) as app:
with gr.Row():
gr.HTML('<div id="header">R-Detect: Human-Rewritten or LLM-Generated</div>')
with gr.Row():
gr.HTML(
"""
<div class="links">
<a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
<span class="separator">|</span>
<a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
<span class="separator">|</span>
<a href="mailto:[email protected]" target="_blank">Contact</a>
</div>
"""
)
with gr.Row():
gr.HTML('<div class="demo-banner">This is a demo. For the full version, please refer to the <a href="https://github.com/xLearn-AU/R-Detect" target="_blank">GitHub</a> or the <a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>.</div>')
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter Text Here",
lines=8,
elem_classes=["input-text"], # Applying the CSS class
value="Hugging Face is a company and community that has become one of the leading platforms in the field of natural language processing (NLP). It is best known for developing and maintaining the Transformers library, which simplifies the use of state-of-the-art machine learning models for tasks such as text classification, language generation, translation, and more."
)
output = gr.Textbox(
label="Inference Result",
placeholder="Made by Human or AI",
elem_id="output-text",
lines=2, # Keep it compact
interactive=False, # Make it read-only
)
with gr.Row():
# TODO: Add model selection in the future
# model_name = gr.Dropdown(
# [
# "Faster Model",
# "Medium Model",
# "Powerful Model",
# ],
# label="Select Model",
# value="Medium Model",
# elem_classes=["select"],
# )
submit_button = gr.Button(
"Run Detection", variant="primary", elem_classes=["button"]
)
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"])
submit_button.click(run_test, inputs=[input_text], outputs=[output])
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
with gr.Accordion("Disclaimer", open=True, elem_classes=["accordion"]):
gr.Markdown(
"""
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
- **Accuracy**: Results may vary based on input length and quality.
"""
)
with gr.Accordion("Cite Our Work", open=True, elem_classes=["accordion"]):
gr.Markdown(
"""
```
@inproceedings{song2025deep,
title = {Deep Kernel Relative Test for Machine-generated Text Detection},
author = {Yiliao Song and Zhenqiao Yuan and Shuhai Zhang and Zhen Fang and Jun Yu and Feng Liu},
booktitle = {The Twelfth International Conference on Learning Representations},
year = {2025},
url = {https://openreview.net/pdf?id=z9j7wctoGV}
}
```
"""
)
with gr.Accordion("Acknowledgement", open=True, elem_classes=["accordion"]):
gr.Markdown(
"""
acknowledgement = {Coin Wang and Jerry Ye},
"""
)
app.launch()
|